Nonparametric Algorithms for Estimating the States of Natural Objects

  • A. V. LapkoEmail author
  • V. A. Lapko
Analysis and Synthesis of Signals and Images


Modifications of a nonparametric pattern recognition algorithm corresponding to the maximum likelihood criterion with additional decision functions are considered. The synthesis of the proposed algorithms is based on the analysis of the ratios of the estimates of the probability density distributions of random variables in classes and their functionals with input thresholds. The choice of the thresholds is determined by specific features of the classification problem. The results obtained are applied for assessing the states of forest tracts on the basis of remote sensing data.


pattern recognition kernel estimation of the probability density choice of the bandwidth decision rule with advantage gradations remote sensing state of forest tracts 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. M. Borzov and O. I. Potaturkin, “Efficiency of the Spectral-Spatial Classification of Hyperspectral Imaging Data,” Avtometriya 53 (1), 32–42 (2017) [Optoelectron., Instrum. Data Process. 53 (1), 26–34 (2017)].Google Scholar
  2. 2.
    S. M. Borzov and O. I. Potaturkin, “Classification of Hyperspectral Images with Different Methods of Training Set Formation,” Avtometriya 54 (1), 89–97 (2018) [Optoelectron., Instrum. Data Process. 54 (1), 76–82 (2018)].Google Scholar
  3. 3.
    I. V. Zen’kov, S. T. Im, A. V. Lapko, et al., Development and Application of Information Technologies for Studying Natural Resources of Siberian Territories on the Basis of Remote Sensing Data (SibGAU, Krasnoyarsk, 2017) [in Russian].Google Scholar
  4. 4.
    authV. I. Kharuk, S. T. Im, I. A. Petrov, et al., “Fir Decline and Mortality in the Southern Siberian Mountains,” Reg. Environ. Change 17 (3), 803–812 (2017).CrossRefGoogle Scholar
  5. 5.
    V. A. Epanechnikov, “Nonparametric Estimate of the Multidimensional Probability Density,” Teor. Veroyatn. Primen. 14 (1), 156–161 (1969).MathSciNetzbMATHGoogle Scholar
  6. 6.
    E. Parzen, “On Estimation of a Probability Density Function and Mode,” Ann. Math. Statist. 33 (3), 1065–1076 (1962).ADSMathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    A. V. Lapko and V. A. Lapko, “Nonparametric Estimate of the Parzen-Type Probability Density with an Implicitly Defined Form of the Kernel Function,” Izmer. Tekhnika, No. 6, 14–17 (2016).Google Scholar
  8. 8.
    A. V. Lapko and V. A. Lapko, “Nonparametric Estimate of a Parzen-Type Probability Density with an Implicitly Specified Form of the Kernel,” Measur. Techn. 59 (6), 571–576 (2016).CrossRefGoogle Scholar
  9. 9.
    A. V. Lapko and V. A. Lapko, “Regression Estimation of the Multidimensional Probability Density and its Properties,” Avtometriya 50 (2), 50–56 (2014) [Optoelectron., Instrum. Data Process. 50 (2), 148–153 (2014)].Google Scholar
  10. 10.
    T. Duong, “Ks: Kernel Density Estimation and Kernel Discriminant Analysis in R,” J. Statist. Software 21 (7), 1–16 (2017).Google Scholar
  11. 11.
    Z. I. Botev, J. F. Grotowski, and D. P. Kroese, “Kernel Density Estimation via Diffusion,” Ann. Statist. 38 (5), 2916–2957 (2010).MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    S. J. Sheather, “Density Estimation,” Statist. Sci. 19 (4), 588–597 (2004).MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    D. W. Scott, Multivariate Density Estimation: Theory, Practice, and Visualization (Wiley, New Jersey, 2015).zbMATHGoogle Scholar
  14. 14.
    S. Chen, “Optimal Bandwidth Selection for Kernel Density Functionals Estimation,” J. Probability Statist. 2015 (1), 1–21 (2015).MathSciNetCrossRefGoogle Scholar
  15. 15.
    M. I. Borrajo, W. González-Manteiga, and M. D. Martinez-Miranda, “Bandwidth Selection for Kernel Density Estimation with Length-Biased Data,” J. Nonparametr. Statist. 29 (3), 636–668 (2017).MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    A. V. Lapko and V. A. Lapko, “Analysis of Asymptotic Properties of Nonparametric Estimation of the Equation of the Separation Surface in a Two-Alternative Problem of Pattern Recognition,” Avtometriya 46 (3), 48–53 (2010) [Optoelectron., Instrum. Data Process. 46 (3), 243–247 (2010)].Google Scholar
  17. 17.
    A. V. Lapko, V. A. Lapko, M. I. Sokolov, and S. V. Chentsov, Nonparametric Classification Systems (Nauka, Novosibirsk, 2000) [in Russian].zbMATHGoogle Scholar
  18. 18.
    A. V. Lapko and V. A. Lapko, Multilevel Nonparametric Systems of Information Processing (SibGAU, Krasnoyarsk, 2013) [in Russian].zbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Institute of Computational Modeling, Siberian BranchRussian Academy of SciencesKrasnoyarskRussia
  2. 2.Reshetnev Siberian State University of Science and TechnologyKrasnoyarskRussia

Personalised recommendations