Advertisement

Analysis of Correction Methods for Digital Terrain Models Based on Satellite Data

  • A. I. PavlovaEmail author
  • A. V. Pavlov
Analysis and Synthesis of Signals and Images
  • 9 Downloads

Abstract

Correction algorithm for digital terrain models derived from remote sensing of the Earth’s surface are analyzed. The accuracy of the ASTER GDEM2, SRTM X-band, and ALOS DMS global digital elevation models were analyzed, showing that ALOS DMS images have the smallest absolute and relative errors for different relief conditions (flat, hilly and highly dissected plains) of the Novosibirsk oblast’. A comparative analysis of the algorithms proposed by Wang and Liu, Plantchon and Darboux, Pelletier, and Tarboton was performed to eliminate artifacts on original satellite images associated with local topographic lows (depressions, pits). The smallest errors for different terrain conditions were obtained using the algorithm of Wang and Liu.

Keywords

digital terrain model global height matrices geomorphometric analysis digital terrain modeling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Sharyi, “Geomorphometry in Earth Sciences and Ecology: A Review of Methods and Applications,” Izv. SamNTs RAN 8 (2), 458–473 (2006).MathSciNetGoogle Scholar
  2. 2.
    Geomorphometry: Concepts, Software, Applications. Vol. 33. Ch. 1. Geomorphometry: A Brief Guide, Ed. by R. J. Pike, I. S. Evans, and T. Hengl (Elsevier, 2009), pp. 3–30.Google Scholar
  3. 3.
    Studies on Environmental and Applied Geomorphology. Ch. 3. Geomorphological Instability Triggered by Heavy Rainfall: Examples in the Abruzzi region (Central Italy), Ed. by E. Miccadei, T. Piacentini, F. Daverio, and R. Di Michele (InTech, Croatia, 2012), pp. 45–63.Google Scholar
  4. 4.
    A. S. Alekseev and A. A. Nikiforov, “Effects of Topography on the Structure and Productivity of Forest Landscapes Using 3D Modeling in Terms of the Lisinsky Educational and Experimental Forest Enterprise,” Lesovedenie, No. 5, 42–53 (2014).Google Scholar
  5. 5.
    L. S. Sharaya and P. A. Sharyi, “Geomorphometric Study of the Spatial Organization of Forest Ecosystems,” Ekologiya, No. 1, 3–10 (2011).Google Scholar
  6. 6.
    A. I. Pavlova and V. K. Kalichkin, “Using the Geomorphometric Analysis of a Relief for Creating a Database of Farmlands,” Sib. Vestn. Sel’khoz. Nauki, No. 5, 5–13 (2016).Google Scholar
  7. 7.
    Wiki-Photogrammetry. Global Digital Elevation Models. http://www.racurs.ru/wiki.Google Scholar
  8. 8.
    T. E. Samsonov, Multiscale Mapping of Relief: General Geographic and Hypsometric Maps (LAP Lambert Academic Publishing, Saarbrucken, 2011).Google Scholar
  9. 9.
    D. Gesch, G. Evans, J. Mauck, et al., “The National Map Elevation,” U. S. Geological Survey Open-File Report 2009–3053. 2009. https://pubs.usgs.gov/fs/2009/3053.Google Scholar
  10. 10.
    D. B. Gesch, M. J. Oimoen, and G. A. Evans, “Accuracy Assessment of the U. S. Geological Survey National Elevation Dataset, and Comparison with Other Large-Area Elevation Datasets SRTM and ASTER,” U. S. Geological Survey Open-File Report 2014–1008. 2014. https://pubs.usgs.gov/of/2014/1008/pdf/ofr2014-1008.pdf.Google Scholar
  11. 11.
    M. Dubininm, “General Description of ASTER GDEM,” in GIS-LAB. Geographic Information Systems and Remote Sensing. 2009. http://gis-lab.info/qa/aster-gdem.html.Google Scholar
  12. 12.
    Shuttle Radar Topography Mission. Data Products. https://www2.jpl.nasa.gov/srtm/cband-dataproducts.html.Google Scholar
  13. 13.
    T. Farr, P. Rosen, E. Caro, et al., “The Shuttle Radar Topography Mission,” Rev. Geophys. 45 (2), 1–33 (2007).CrossRefGoogle Scholar
  14. 14.
    E. Rodriguez, C. S. Morris, and J. E. Belz, “A Global Assessment of the SRTM Performance,” Photogramm. Eng. Remote Sens. 72 (3), 249–260 (2006).CrossRefGoogle Scholar
  15. 15.
    T. Tadono, H. Ishida, F. Oda, et al., “Precise Global DEM Generation by ALOS PRISM,” ISPRS Ann. Photogramm., Remote Sens. Spatial Inform. Sci. ii-4, 71–76 (2014).Google Scholar
  16. 16.
    J. Takaku, T. Tadono, K. Tsutsui, and M. Ichikawa, “Validation of “AW3D” Global DSM Generated from ALOS PRISM,” ISPRS Ann. Photogramm., Remote Sens. Spatial Inform. Sci. III-4, 25–31 (2016).Google Scholar
  17. 17.
    A. I. Pavlova, “Analysis of Elevation Interpolation Methods for Creating Digital Elevation Models,” Avtometriya 53 (2), 86–94 (2017) [Optoelectron., Instrum. Data Process. 53 (2), 171–177 (2017)].Google Scholar
  18. 18.
    V. M. Kravtsov and R. P. Donukalova, Geography of Novosibirsk oblast’: Textbook (INFOLIO-press, Novosibirsk, 1999) [in Russian].Google Scholar
  19. 19.
    S. K. Jenson and J. O. Domingue, “Extracting Topographic Structure from Digital Elevation Data for Geographic Information System Analysis,” Photogramm. Eng. Remote Sens. 54 (11), 1593–1600 (1988).Google Scholar
  20. 20.
    O. Planchon and F. Darboux, “A Fast, Simple and Versatile Algorithm to Fill the Depressions of Digital Elevation Models,” Catena 46 (3), 159–176 (2001).Google Scholar
  21. 21.
    L. Wang, H. Liu, “An Efficient Method for Identifying and Filling Surface Depressions in Digital Elevation Models for Hydrologic Analysis and Modelling,” Intern. J. Geograph. Inform. Sci. 20 (2), 193–213 (2006).MathSciNetCrossRefGoogle Scholar
  22. 22.
    M. F. Hutchinson, “A New Method for Gridding Elevation and Stream Line Data with Automatic Removal of Spurious Pits,” J. Hydrology 106 (3), 211–232 (1989).ADSCrossRefGoogle Scholar
  23. 23.
    J. O’Callaghan, D. Mark, “The Extraction of Drainage Networks from Digital Elevation Data,” Computer Vision, Graphics Image Process 28 (3), 323–344 (1984).CrossRefGoogle Scholar
  24. 24.
    R. Barnes, C. Lehman, and D. Mulla, “Priority-Flood: An Optimal Depression-Filling and Watershed-Labeling Algorithm for Digital Elevation Models,” Computers Geosci. 62, 117–127 (1984).ADSCrossRefGoogle Scholar
  25. 25.
    Y. Liu, W. Zhang, and J. Xu, “Another Fast and Simple DEM Depression Filling Algorithm Based on Priority Queue Structure,” Atmospheric Oceanic Sci. Lett. 2 (4), 214–219 (2009).CrossRefGoogle Scholar
  26. 26.
    J. Fairfield and P. Leymarie, “Drainage Networks from Grid Digital Elevation Models,” Water Resour. Res. 27 (5), 709–717 (1991).ADSCrossRefGoogle Scholar
  27. 27.
    N. L. Lea, “An Aspect Driven Kinematic Routing Algorithm,” in Overland Flow: Hydraulics and Erosion Mechanics, Ed. by A. J. Parsons and A. D. Abrahams (Chapman and Hall, New York, 1992), pp. 147–175.Google Scholar
  28. 28.
    D. G. Tarboton, “A New Method for the Determination of Flow Directions and Upslope Areas in Grid Digital Elevation Models,” Water Resour. Res. 33 (2), 309–319 (1997).ADSCrossRefGoogle Scholar
  29. 29.
    M. She, An Integrated Hydrological Modelling System: User Guide. Vol. 1 (DHI Software, 2007).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Novosibirsk State University of Economics and ManagementNovosibirskRussia
  2. 2.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations