Discrete Algorithms for Solving Two Continuous Problems of Random

  • A. L. ReznikEmail author
  • A. V. Tuzikov
  • A. A. Soloviev
  • A. V. Torgov
Analysis and Synthesis of Signals and Images


A combinatorial-discrete approach to solving continuous probabilistic problems arising in the analysis of random point structures is proposed. It is based on replacement of computational schemes based on calculations of cumbersome multidimensional integral expressions by schemes that do not require the use of the apparatus of differential and integral calculus. Another distinctive feature of the study is the systematic use of the generalized Catalan numbers from the multidimensional extension of the classical Catalan sequence for ranking random mutually dependent sequences.


random compact groups computer-assisted analytical calculations generalized Catalan numbers 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Efimov, A. M. Iskol’dskii, Z. A. Lifshits, and Yu. M. Krendel, “On Characteristics of Various Methods of Reading Images of Discrete Structures,” Avtometriya, No. 1, 3–7 (1973).Google Scholar
  2. 2.
    A. L. Reznik, A. V. Tuzikov, A. A. Soloview, and A. V. Torgov, “Time-Optimal Algorithms of Searching for Pulsed-Point Sources for Systems with Several Detectors,” Avtometriya 53 (3), 3–11 (2017) [Optoelectron., Instrum. Data Process. 53 (3), 203–209 (2017)].Google Scholar
  3. 3.
    A. L. Reznik, A. A. Solov’ev, and A. V. Torgov, “On the Probability of the Formation of Local Groups in Random Point Images,” Pattern Recogn. Image Analysis 26 (4), 714–719 (2016).CrossRefGoogle Scholar
  4. 4.
    A. L. Reznik, A. V. Tuzikov, A. A. Solov’ev, and A. V. Torgov, “Analysis of Random Point Images with the Use of Symbolic Computation Codes and Generalized Catalan Numbers,” Avtometriya 52 (6), 3–11 (2016) [Optoelectron., Instrum. Data Process. 52 (6), 529–536 (2016)].Google Scholar
  5. 5.
    D. A. Darling, “On Class Problems Related to the Random Division of an Interval,” Ann. Math. Statist. 24 (2), 239–253 (1953).MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    D. E. Barton and F. N. David, “Combinatorial Extreme Value Distributions,” Mathematika 6 (1), 63–76 (1959).MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    J. I. Naus, “Some Probabilities, Expectations, and Variances for the Size of Largest Clusters and Smallest Intervals,” J. Amer. Statist. Assoc. 61 (316), 1191–1199 (1966).MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    H. A. David, Order Statistics (Wiley, New York — London, 1970).zbMATHGoogle Scholar
  9. 9.
    E. Parzen, Modern Probability Theory and Its Applications (Wiley, New York — London, 1960).CrossRefzbMATHGoogle Scholar
  10. 10.
    S. S. Wilks, Mathematical Statistics (Wiley, New York, 1962).zbMATHGoogle Scholar
  11. 11.
    A. L. Reznik, V. M. Efimov, and A. A. Solov’ev, “Computer-Analytical Calculation of the Probability Characteristics of Readout of Random Point Images,” Avtometriya 47 (1), 10–16 (2011) [Optoelectron., Instrum. Data Process. 47 (1), 7–11 (2011)].Google Scholar
  12. 12.
    R. P. Stanley, Enumerative Combinatorics. Vol. 2 (Cambridge University Press, Cambridge, 1999).CrossRefzbMATHGoogle Scholar
  13. 13.
    P. Hilton and J. Pedersen, “Catalan Numbers, their Generalization, and their Uses,” Math. Intell. 13 (2), 64–75 (1991).MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. L. Reznik
    • 1
    Email author
  • A. V. Tuzikov
    • 2
  • A. A. Soloviev
    • 1
  • A. V. Torgov
    • 1
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.United Institute of Informatics ProblemsNational Academy of Sciences, BelarusMinskBelarus

Personalised recommendations