Advertisement

Study of the optical methods of formation of multilevel profile in the thin films of a hybrid photopolymer material based on thiol-siloxane and acrylate oligomers

  • N. G. MironnikovEmail author
  • V. P. Korolkov
  • D. I. Derevyanko
  • V. V. Shelkovnikov
Diffractive Optics

Abstract

This paper describes a study of the optical methods for fabrication of multilevel profile in the layers of a Hybrimer-TATS hybrid photopolymer material based on thiol-siloxane and acrylate oligomers. Grayscale photolithography and direct laser writing are used to form multilevel structures 3.5 and 6 μ in height, respectively. The characteristic curves and photosensitivity of the material are determined. The film preparation and treatment processes are optimized, and it is determined that addition of the stages of pre- and post-exposure significantly affects the photosensitive properties of Hybrimer-TATS. The photopolymer is promising as a structural material for the formation of microstructured optical components.

Keywords

hybrid photopolymer thiol-siloxane-acrylate oligomers laser writing photolithography multilevel diffractive structures characteristic curve 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. P. Korolkov, Laser Lithography Systems and Technologies for Synthesis of Relief-Phase Optical Elements, Thesis of Doctor of Technical Sciences, Novosibirsk, 2013 [in Russian].Google Scholar
  2. 2.
    M. T. Gale, M. Rossi, J. Pedersen, et al., “Fabrication of Continuous-Relief Micro-Optical Elements by Direct Laser Writing in Photoresists,” Opt. Eng. 33 (11), 3556–3566 (1994).ADSCrossRefGoogle Scholar
  3. 3.
    V. P. Korolkov, R. K. Nasyrov, and R. V. Shimanskii, “Zone-Boundary Optimization for Direct Laser Writing of Continuous-Relief Diffractive Optical Elements,” Appl. Opt. 45 (1), 53–62 (2006).ADSCrossRefGoogle Scholar
  4. 4.
    The Ultimate Lithography Research Tool — DWL 66+, Heidelberg Instruments. http://www.himt.de/index.php/dwl66.html.Google Scholar
  5. 5.
    Microtech. http://www.microtechweb.com.Google Scholar
  6. 6.
    A. G. Poleshchuk, E. G. Churin, V. P. Koronkevich, et al., “Polar Coordinate Laser Pattern Generator for Fabrication of Diffractive Optical Elements with Arbitrary Structure,” Appl. Opt. 38 (8), 1295–1301 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    A. G. Verkhoglyad, M. A. Zavyalova, A. E. Kachkin, et al., “Circular Laser Recording System for the Formation of Phase and Amplitude Microstructures on Spherical Surfaces,” Datchiki i Sistemy, No. 10, 45–52 (2015).Google Scholar
  8. 8.
    S. N. Gulyaev, Relief-Phase Holograms on Photo-Emulsion Layers Irradiated by Ultraviolet Radiation: Thesis of Candidate of Physical and Mathematical Sciences, Saint-Petersburg, 2006 [in Russian].Google Scholar
  9. 9.
    I. Voynarovych, S. Schroeter, R. Poehlmann, et al., “Surface Corrugating Direct Laser Writing of Microstructures in Ternary Chalcogenide Films Using a Continuous-Wave Super-Bandgap Laser,” J. Phys. D: Appl. Phys. 48, 265106 (2005).ADSCrossRefGoogle Scholar
  10. 10.
    J. Yao, Z. Cui, F. Gao, et al., “Refractive Micro Lens Array Made of Dichromate Gelatin with Gray-Tone Photolithography,” J. Microelectron. Eng. 57–58, 729–735 (2001).CrossRefGoogle Scholar
  11. 11.
    P. Dannberg, R. Bierbaum, L. Erdmann, et al., “High-Precision Micro-Optic Elements byWafer-Scale Replication on Arbitrary Substrates,” Proc. SPIE. 3739, 206–212 (1999).ADSCrossRefGoogle Scholar
  12. 12.
    S. Aura, “Fabrication of Inorganic-Organic Hybrid Polymer Micro and Nanostructures for Fluidic Applications,” in Ser. Doctoral Dissertations (Aalto University, Helsinki, 2011).Google Scholar
  13. 13.
    Fraunhofer-Institut für Silicatforschung ISC. http://www.ormocere.de/en.html.Google Scholar
  14. 14.
    B. S. Bae, “High Photosensitive Sol-Gel Hybrid Materials for Direct Photo-Imprinting of Micro-Optics,” J. Sol- Gel Sci. Tech. 31, 309–315 (2004).CrossRefGoogle Scholar
  15. 15.
    X. Zhang, “Waveguide Devices Derived from Hybrid Sol-Gel Materials,” SIMTech Tech. Rep. 7 (3), 149–154 (2006).Google Scholar
  16. 16.
    M. Oubaha, R. K. Kribich, R. Copperwhite, et al., “New Organic Inorganic Sol-Gel Material with High Transparency at 1.55 μm,” Opt. Commun. 253, 346–351 (2005).ADSCrossRefGoogle Scholar
  17. 17.
    M. Malinauskas, A. Gaidukeviciute, V. Purlys, et al., “Direct Laser Writing of Microoptical Structures Using a Ge-Containing hybrid material,” Metamaterials 5 (2–3), 135–140 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    K. H. Brenner and J. Jahns, Microoptics: From Technology to Applications (Springer, 2004).Google Scholar
  19. 19.
    Hybrid Polymers Micro Resist Technology. http://microresist.de/en/product/hybrid-polymers.Google Scholar
  20. 20.
    A. Hebke, “Laser Direct Writing and Mask Lithographic Produced Polymeric Integrated Optics,” J. Opt. Adv. Mater. 13 (9), 1130–1134 (2011).Google Scholar
  21. 21.
    V. V. Shelkovnikov, “Synthesis and Thermomechanical Properties of Hybrid Photopolymer Films Based on the Thiol-Siloxane and Acrylate Oligomers,” J. Mater. Sci. 50 (23), 7544–7556 (2015).ADSCrossRefGoogle Scholar
  22. 22.
    N. G. Mironnikov and V. P. Korolkov, “Fabrication of Multilevel Diffractive Structures on Hybrid Photopolymers by Laser Writing System with Circular Scanning International Symposium,” in Abstracts of Inter. Symp. “Fundamentals of Laser Assisted Micro- and Nanotechnologies” (FLAMN-16), June 27 — July 1, 2016, St. Petersburg, Russia.Google Scholar
  23. 23.
    N. G. Mironnikov, V. P. Korolkov, D. I. Derevyanko, et al., “Study of Optical and Thermo-Optical Properties of a Hybrid Photopolymer Material Based on Thiol-Siloxane and Tetraacrylate Oligomer,” Avtometriya 52 (2), 88–96 (2016) [Optoelectron., Instrum. Data Process. 52 (2), 180–186 (2016)].Google Scholar
  24. 24.
    V. A. Loskutov and V. V. Shelkovnikov, “Synthesis of Hexafluorophosphates of 9-Oxo-10-(4-Heptoxyphenyl) Thioxanthenium,” Russ. J. Org. Chem. 42 (2), 298–301 (2006).CrossRefGoogle Scholar
  25. 25.
    V. P. Korolkov and A. G. Poleshchuk, “Laser Writing Systems and Technologies for Fabrication of Binary and Continuous Relief Diffractive Optical Elements,” Proc. SPIE 6732 (2007).Google Scholar
  26. 26.
    V. P. Korolkov, A. I. Malyshev, V. G. Nikitin, et al., “Halftone Photomasks Based on LDW Glasses,” Avtometriya, No. 6, 27–37 (1998).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • N. G. Mironnikov
    • 1
    • 2
    Email author
  • V. P. Korolkov
    • 1
    • 2
  • D. I. Derevyanko
    • 3
  • V. V. Shelkovnikov
    • 3
    • 4
  1. 1.Institute of Automation and Electrometry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.N. N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Siberian BranchRussian Academy of SciencesNovosibirskRussia
  4. 4.Novosibirsk State Technical UniversityNovosibirskRussia

Personalised recommendations