Advertisement

Study of photon statistics using a compound Poisson distribution and quadrature measurements

  • Yu. I. Bogdanov
  • N. A. Bogdanova
  • K. G. Katamadze
  • G. V. Avosopyants
  • V. F. Lukichev
Optical Information Technologies

Abstract

This paper describes the model of a compound Poisson distribution for photon statistics with regard to their bunching in Fock states, thermal states, and others. The method of generating functions is used to calculate the probability distributions, moments, and correlation functions. The parameters of conditional states arising from the subtraction of photons by splitting the beam are determined. The problem of state reconstruction with regard to quadrature quantum measurements is considered. The study is aimed at developing high-precision methods for generating and controlling optical quantum states.

Keywords

quadrature quantum measurements homodyne detection compound Poisson distribution generating functions photon statistics thermal states conditional distributions corresponding to photon subtraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. L. Kurochkin, I. I. Ryabtsev, and I. G. Neizvestny, “Quantum. Cryptography and Quantum-Key Distribution with Single Photons,” Mikroelektronika 35 (1), 37–43 (2006) [Russian Microelectronics 35, 31–36 (2006)].Google Scholar
  2. 2.
    D. F. V. James, P. G. Kwiat, W. J. Munro, and A. G. White, “Measurement of Qubits,” Phys. Rev. A 64 (5), 052312 (2001).ADSCrossRefMathSciNetGoogle Scholar
  3. 3.
    J. Řeháček, B. G. Englert, and D. Kaszlikowski, “Minimal Qubit Tomography,” Phys. Rev. A 70 (5), 052321 (2004).ADSCrossRefGoogle Scholar
  4. 4.
    Yu. I. Bogdanov, G. Brida, M. Genovese, et al., “Statistical Estimation of the Efficiency of Quantum State Tomography Protocols,” Phys. Rev. Lett. 105 (1), 010404 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    Yu. I. Bogdanov, E. V. Moreva, G. A. Maslennikov, et al., “Polarization States of Four-Dimensional Systems Based on Biphotons,” Phys. Rev. A 73 (6), 063810 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. I. Bogdanov, M. V. Chekhova, L. A. Krivitsky, et al., “Statistical Reconstruction of Qutrits,” Phys. Rev. A 70 (4), 042303 (2004).ADSCrossRefGoogle Scholar
  7. 7.
    Yu. I. Bogdanov, L. A. Krivitsky, and S. P. Kulik, “Statistical Reconstruction of the Quantum States of Three- Level Optical Systems,” Pis’ma v Zhurn. Eksp. Teoret. Fiz. 78 (6), 804–809 (2003) [JETP Letters 78 (6), 352–357 (2003)].Google Scholar
  8. 8.
    K. Bencheikh, F. Gravier, J. Douady, et al., “Triple Photons: A Challenge in Nonlinear and Quantum Optics,” Comptes Rendus Physique 8 (2), 206–220 (2007).ADSCrossRefGoogle Scholar
  9. 9.
    N. A. Borshchevskaya, K. G. Katamadze, S. P. Kulik, and M. V. Fedorov, “Three-Photon Generation by Means of Third-Order Spontaneous Parametric Down-Conversion in Bulk Crystals,” Laser Phys. Lett. 12 (11), 115404 (2015).ADSCrossRefGoogle Scholar
  10. 10.
    J. Leach, B. Jack, J. Romero, et al., “Quantum Correlations in Optical Angle-Orbital Angular Momentum Variables,” Science 329 (5992), 662–665 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    M. Agnew, J. Leach, M. McLaren, et al., “Tomography of the Quantum State of Photons Entangled in High Dimensions,” Phys. Rev. A 84 (6), 062101 (2011).ADSCrossRefGoogle Scholar
  12. 12.
    S. S. Straupe, D. P. Ivanov, A. A. Kalinkin, et al., “Angular Schmidt Modes in Spontaneous Parametric Down- Conversion,” Phys. Rev. A 83 (6), 060302 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    B. Bessire, C. Bernhard, T. Feurer, and A. Stefanov, “Versatile Shaper-Assisted Discretization of Energy-Time Entangled Photons,” New J. Phys. 16 (3), 033017 (2014).ADSCrossRefGoogle Scholar
  14. 14.
    L. Olislager, E. Woodhead, K. P. Huy, et al., “Creating and Manipulating Entangled Optical Qubits in the Frequency Domain,” Phys. Rev. A 89 (5), 052323 (2014).ADSCrossRefGoogle Scholar
  15. 15.
    S. L. Braunstein and P. van Loock, “Quantum Information with Continuous Variables,” Rev. Mod. Phys. 77 (2), 513–577 (2005).ADSCrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    U. Leonhardt and H. Paul, “Measuring the Quantum State of Light,” Progr. Quantum Electron. 19 (2), 89–130 (1995).ADSCrossRefGoogle Scholar
  17. 17.
    A. I. Lvovsky and M. G. Raymer, “Continuous-Variable Optical Quantum-State Tomography,” Rev. Mod. Phys. 81 (1), 299–332 (2009).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. I. Bogdanov and S. P. Kulik, “The Efficiency of Quantum Tomography Based on Photon Detection,” Laser Phys. Lett. 10 (12), 125202 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    Yu. I. Bogdanov, G. V. Avosopyants, L. V. Belinskii, K. G. Katamadze, S. P. Kulik, and V. F. Lukichev, “Statistical Reconstruction of Optical Quantum States Based on Mutually Complementary Quadrature Quantum Measurements,” Zh. Eskp. Teoret. Fiz. 150 (2), 246–253 (2016) [JETP 123 (2), 212–218 (2016)].Google Scholar
  20. 20.
    W. Martienssen and E. Spiller, “Coherence and Fluctuations in Light Beams,” Amer. J. Phys. 32 (12), 919–926 (1964).ADSCrossRefGoogle Scholar
  21. 21.
    F. T. Arecchi, A. Berné, and P. Bulamacchi, “High-Order Fluctuations in a Single-Mode Laser Field,” Phys. Rev. Lett. 16 (1), 32–35 (1966).ADSCrossRefGoogle Scholar
  22. 22.
    A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost Imaging with Thermal Light: Comparing Entanglement and Classical Correlation,” Phys. Rev. Lett. 93 (9), 093602 (2004).ADSCrossRefGoogle Scholar
  23. 23.
    F. Ferri, D. Magatti, A. Gatti, et al., “High-Resolution Ghost Image and Ghost Diffraction Experiments with Thermal Light,” Phys. Rev. Lett. 94 (18), 183602 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-Photon Imaging with Thermal Light,” Phys. Rev. Lett. 94 (6), 063601 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    S. Lloyd, “Enhanced Sensitivity of Photodetection Via Quantum Illumination,” Science 321 (5895), 1463–1465 (2008).ADSCrossRefGoogle Scholar
  26. 26.
    E. D. Lopaeva, I. R. Berchera, I. P. Degiovanni, et al., Experimental realization of quantum illumination,” Phys. Rev. Lett. 110 (15), 153603 (2013).ADSCrossRefGoogle Scholar
  27. 27.
    L. Vabre, A. Dubois, and A. C. Boccara, “Thermal-Light Full-Field Optical Coherence Tomography,” Opt. Lett. 27 (7), 530–532 (2002).ADSCrossRefGoogle Scholar
  28. 28.
    A. F. Fercher, C. K. Hitzenberger, M. Sticker, et al., “A Thermal Light Source Technique for Optical Coherence Tomography,” Opt. Commun. 185 (1–3), 57–64 (2000).ADSCrossRefGoogle Scholar
  29. 29.
    I. B. Bobrov, S. S. Straupe, E. V. Kovlakov, and S. P. Kulik, “Schmidt-Like Coherent Mode Decomposition and Spatial Intensity Correlations of Thermal Light,” New J. Phys. 15 (7), 073016 (2013).ADSCrossRefGoogle Scholar
  30. 30.
    A. Zavatta, V. Parigi, and M. Bellini, “Experimental Nonclassicality of Single-Photon-Added Thermal Light States,” Phys. Rev. A 75 (5), 052106 (2007).ADSCrossRefGoogle Scholar
  31. 31.
    V. Parigi, A. Zavatta, M. Kim, and M. Bellini, “Probing Quantum Commutation Rules by Addition and Subtraction of Single Photons to/from a Light Field,” Science 317 (5846), 1890–1893 (2007).ADSCrossRefGoogle Scholar
  32. 32.
    A. Zavatta, V. Parigi, M. Kim, and M. Bellini, “Subtracting Photons from Arbitrary Light Fields: Experimental Test of Coherent State Invariance by Single-Photon Annihilation,” New J. Phys. 10 (12), 123006 (2008).ADSCrossRefGoogle Scholar
  33. 33.
    Yu. I. Bogdanov, N. A. Bogdanova, and V. L. Dshkhunyan, “Statistical Yield Modeling for IC Manufacture: Hierarchical Fault Distributions,” Mikroelektronika 32 (1), 77–88 (2003) [Russian Microelectronics 32 (1), 51-62 (2003)].Google Scholar
  34. 34.
    W. Feller, Introduction to Probability Theory and Its Applications, Vol. 1 (Wiley, 1950), Vol. 2 (John Wiley & Sons, 1966).Google Scholar
  35. 35.
    N. Ja. Vilenkin, “Special Functions and the Theory of Group Representations”, in Translations of Mathematical Monographs, Vol. 22 (American Mathematical Society, Providence, 1968).Google Scholar
  36. 36.
    L. D. Landau and E. M. Lifshitz, Statistical Physics. Part 1 (Pergamon Press, 1959).Google Scholar
  37. 37.
    F. T. Arecchi, “Measurement of the Statistical Distribution of Gaussian and Laser Sources,” Phys. Rev. Lett. 15 (24), 912–916 (1965).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • Yu. I. Bogdanov
    • 1
    • 2
    • 3
  • N. A. Bogdanova
    • 1
    • 3
  • K. G. Katamadze
    • 1
    • 4
  • G. V. Avosopyants
    • 1
    • 3
  • V. F. Lukichev
    • 1
  1. 1.Institute of Physics and TechnologyRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University “MEPhI”MoscowRussia
  3. 3.National Research University of Electronic TechnologyZelenogradRussia
  4. 4.M. V. Lomonosov Moscow State UniversityMoscowRussia

Personalised recommendations