Long-distance fiber-optic quantum key distribution using superconducting detectors

  • V. L. Kurochkin
  • A. V. Zverev
  • Yu. V. Kurochkin
  • I. I. Ryabtsev
  • I. G. Neizvestnyi
  • R. V. Ozhegov
  • G. N. Gol’tsman
  • P. A. Larionov
Optical Information Technologies
  • 56 Downloads

Abstract

This paper presents the results of experimental studies on quantum key distribution in optical fiber using superconducting detectors. Key generation was obtained on an experimental setup based on a self-compensation optical circuit with an optical fiber length of 101.1 km. It was first shown that photon polarization encoding can be used for quantum key distribution in optical fiber over a distance in excess of 300 km.

Keywords

quantum cryptography single photon detectors 

References

  1. 1.
    C. H. Bennet, “Quantum Cryptography Using Any Two Nonorthogonal States,” Phys. Rev. Lett. 68 (21), 3121–3124 (1992).CrossRefADSMathSciNetGoogle Scholar
  2. 2.
    N. Gisin, G. Ribordy, W. Title, et al., “Quantum Cryptography,” Rev. Mod. Phys. 74 (1), 145–175 (2002).CrossRefADSGoogle Scholar
  3. 3.
    V. Scarani, H. Bechmann-Pasquinucci, N. Cerf, et al., “The Security of Practical Quantum Key Distribution,” Rev. Mod. Phys. 81 (3), 1301–1350 (2009).CrossRefADSGoogle Scholar
  4. 4.
    T. Schmitt-Manderbach, H. Weier, M. Furst, et al., “Experimental Demonstration of Free-Space Decoy-State Quantum Key Distribution over 144 km,” Phys. Rev. Lett. 98 (1), 010504 (2007).CrossRefADSGoogle Scholar
  5. 5.
    P. Villoresi, T. Jennewein, F. Tamburini, et al., “Experimental Verification of the Feasibility of a Quantum Channel between Space and Earth,” New J. Phys. 10 (3), 033038 (2008).CrossRefADSGoogle Scholar
  6. 6.
    J. Yin, Y. Cao, S.-B. Liu, et al., “Experimental Quasi-Single-Photon Transmission from Satellite to Earth,” Opt. Express. 21 (17), 20032 (2013).CrossRefADSGoogle Scholar
  7. 7.
    G. Vallone, D. Bacco, D. Dequal, et al., “Experimental Satellite Quantum Communication,” Phys. Rev. Lett. 115 (4), 040502 (2015).CrossRefADSGoogle Scholar
  8. 8.
    A. Muller, J. Breguet, and N. Gisin, “Experimental Demonstration of Quantum Cryptography using Polarized Photons in Optical Fiber over More than 1 km,” Europhys. Lett. 23 (6), 383–388 (1993).CrossRefADSGoogle Scholar
  9. 9.
    H. Kosaka, A. Tomita, Y. Nambu, et al., “Single-Photon Interference Experiment over 100 km for Quantum Cryptography System using Balanced Qated-Mode Photon Detector,” Electron. Lett. 39 (15), 1119–1201 (2003).CrossRefGoogle Scholar
  10. 10.
    T. Kimura, Y. Nambu, T. Hatanaka, et al., “Single-Photon Interference over 150-km Transmission using Silica- Based Integrated-Optic Interferometers for Quantum Cryptography,” Jpn. J. Appl. Phys. 43 (9AB), L1217–L1219 (2004).CrossRefADSGoogle Scholar
  11. 11.
    B. Korzh, C. C.-W. Lim, R. Houlmann, et al., “Provably Secure and Practical Quantum Key Distribution over 307 km of Optical Fibre,” Nature Photon. 9 (3), 163–168 (2015).CrossRefADSGoogle Scholar
  12. 12.
    IDQ. http://www.idquantique.com.Google Scholar
  13. 13.
    MagiQ. http://www.magiqtech.com.Google Scholar
  14. 14.
    R. Ozhegov, M. Elezov, Y. Kurochkin, et al., “Quantum Key Distribution over 300 km,” in Abst. of the Intern. Conf. “Micro- and Nanoelectronics-2014” (ICMNE-2014), Moscow–Zvenigorod, Russia, October 6–10, 2014, pp. 3–10.Google Scholar
  15. 15.
    H. Shibata, T. Honjo, and K. Shimizu, “Quantum Key Distribution over a 72 dB Channel Loss using Ultralow Dark Count Superconducting Single-Photon Detectors,” Opt. Lett. 39 (17), 5078–5081 (2014).CrossRefADSGoogle Scholar
  16. 16.
    D. Stucki, N. Walenta, F. Vannel, et al., “High Rate, Long-Distance Quantum Key Distribution over 250 km of Ultra Low Loss Fibers,” New J. Phys. 11, 075003 (2009).CrossRefADSGoogle Scholar
  17. 17.
    S. Wang, W. Chen, J.-F. Guo, et al., “2 GHz Clock Quantum Key Distribution over 260 km of Standard Telecom Fiber,” Opt. Lett. 37 (6), 1008–1010 (2012).CrossRefADSMathSciNetGoogle Scholar
  18. 18.
    H. Takesue, S. W. Nam, Q. Zhang, et al., “Quantum Key Distribution over a 40-dB Channel Loss using Superconducting Single-Photon Detectors,” Nature Photon. 1, 343–348 (2007).CrossRefADSGoogle Scholar
  19. 19.
    Y. Liu, T.-Y. Chen, J. Wang, et al., “Decoy-State Quantum Key Distribution with Polarized Photons over 200 km,” Opt. Express. 18 (8), 8587–8594 (2010).CrossRefADSGoogle Scholar
  20. 20.
    D. Stucki, N. Gisin, O. Guinnard, et al., “Quantum Key Distribution over 67 km with a Plug & Play System,” New J. Phys. 4, 41.1–41.8 (2002).Google Scholar
  21. 21.
    V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Using Single-Photon Detectors for Quantum Key Distribution in an Experimental Fiber-Optic Communication System,” Avtometriya 45 (4), 110–119 (2009) [Optoelectron., Instrum. Data Process. 45 (4), 374–381 (2009)].Google Scholar
  22. 22.
    V. L. Kurochkin, A. V. Zverev, Yu. V. Kurochkin, et al., “Experimental Studies in Quantum Cryptography,” Mikroelektronika 40 (4), 264–273 (2011).Google Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • V. L. Kurochkin
    • 1
    • 2
  • A. V. Zverev
    • 1
  • Yu. V. Kurochkin
    • 3
  • I. I. Ryabtsev
    • 1
    • 2
    • 3
  • I. G. Neizvestnyi
    • 1
  • R. V. Ozhegov
    • 4
  • G. N. Gol’tsman
    • 4
  • P. A. Larionov
    • 4
  1. 1.Rzhanov Institute of Semiconductor PhysicsSiberian Branch, Russian Academy of SciencesNovosibirskRussia
  2. 2.Novosibirsk State UniversityNovosibirskRussia
  3. 3.Russian Quantum CenterMoscowRussia
  4. 4.Moscow State Pedagogical UniversityMoscowRussia

Personalised recommendations