Advertisement

Physics of Wave Phenomena

, Volume 26, Issue 4, pp 301–305 | Cite as

Photoluminescence Spectroscopy of an Aqueous Solution of Uranyl Cloride upon Laser and LED Excitation

  • V. S. GorelikEmail author
  • S. O. Nechipurenko
  • A. A. Loboyko
  • N. F. Bunkin
  • S. V. Gudkov
Optical Spectroscopy
  • 9 Downloads

Abstract

The excitation of an aqueous solution of uranyl chloride by a 410-nm semiconductor LED and 266- and 448-nm lasers is found to induce intense photoluminescence: several bands in the blue-green spectral range (494 to 565 nm). Upon excitation of uranyl chloride aqueous solution by a 468-nm LED, the photoluminescence spectrum is a relatively narrow strong band peaking at 508 nm, which was interpreted as the transition from spontaneous photoluminescence to superluminescence. A lasing scheme (similar to that for dye lasers) has been proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. V. Znamenskii and Yu. V. Malyukin, Spectra and Dynamics of Optical Transitions in Rare-Earth Ions in Crystals (Fizmatlit, Moscow, 2008), p. 192 [in Russian].Google Scholar
  2. 2.
    J. R. Lincoln, Spectroscopy of Rare Earth Doped Glasses (University of Southampton, Southampton, 1992), p. 218.Google Scholar
  3. 3.
    B. G. Wybourne, Spectroscopic Properties of Rare Earths (Interscience, N. Y., 1965), p. 236.CrossRefGoogle Scholar
  4. 4.
    G. Meinrath, “Uranium (VI) Speciation by Spectroscopy,” J. Radioanal. Nucl. Chem. 224(1−2), 119 (1997) [DOI: 10.1007/BF02034623].Google Scholar
  5. 5.
    R. G. Denning, J. O. W. Norris, and P. J. Laing, “The Electronic Structure of Actinyl Ions,” Mol. Phys. 54(3), 713 (1985) [DOI: 10.1080/00268978500100561].ADSCrossRefGoogle Scholar
  6. 6.
    R. G. Denning, T. R. Snellgrove, and D. R. Woodwark, “The Electronic Structure of the Uranyl Ion,” Mol. Phys. 37(4), 1109 (1979) [DOI: 10.1080/00268977900100841].ADSCrossRefGoogle Scholar
  7. 7.
    R. G. Denning, “Electronic Structure and Bonding in Actinyl Ions and Their Analogs,” J. Phys. Chem. A. 111(20), 4125 (2007) [DOI: 10.1021/jp071061n].CrossRefGoogle Scholar
  8. 8.
    S. Matsika and R. M. Pitzer, “Actinyl Ions in Cs2UO2Cl4,” J. Phys. Chem. A. 105(3), 637 (2001) [DOI: 10.1021/jp003032h].CrossRefGoogle Scholar
  9. 9.
    D. N. Sanwal and D. D. Pant, “Electronic Transitions of Uranyl Ion,” Proc. Indian Acad. Sci. 69(6), 324 (1969).CrossRefGoogle Scholar
  10. 10.
    E. Rabinowitch and B. R. Linn, Spectroscopy and Photochemistry of Uranyl Compounds (Macmillan Co., N. Y., 1964), p. 375.Google Scholar
  11. 11.
    V. S. Gorelik, Yu. P. Voinov, and V. M. Korshunov, “Resonance Excitation of Photoluminescence in Sodium Uranyl Acetate Crystals,” Opt. Spectrosc. 121(6), 819 (2016) [DOI: 10.1134/S0030400X16120122].ADSCrossRefGoogle Scholar
  12. 12.
    J. C. Krupa, E. Simoni, J. Sytsma, N. Edelstein, “Optical Spectroscopic Studies of Uranyl Chloride UO2CI2,” J. Alloys Comp. 213−214, 471 (1994) [DOI: 10.1016/0925-8388(94)90964-4].CrossRefGoogle Scholar
  13. 13.
    P. C. Debets, “The Structures of Uranyl Chloride and Its Hydrates,” Acta Cryst. 24(3), 400 (1968).CrossRefGoogle Scholar
  14. 14.
    J. C. Taylor and P. W. Wilson, “The Structure of Anhydrous Uranyl Chloride by Powder Neutron Diffraction,” Acta Cryst. B. 29(5), 1073 (1973) [DOI: 10.1107/S0567740873003882].CrossRefGoogle Scholar
  15. 15.
    M. B. Shundalaua, A. I. Komiaka, A. P. Zajogina, and D. S. Umreiko, “A DFT Study of the Structure and Vibrational IR Spectra of the UO2Cl2·2HMPA and UCl4·2HMPA Complexes,” J. Spectrosc. Dyn. 3(4), 1 (2013).Google Scholar
  16. 16.
    Ch. Görller-Walrand and S. DeHouwer, “Spectroscopic Properties of Uranyl Chloride Complexes in Non-Aqueous Solvents,” Phys. Chem. 6(13), 3292 (2004).Google Scholar
  17. 17.
    H. C. Jones and W. W. Strong, “The Absorption Spectra of Various Potassium, Uranyl, Uranous and Neodymium Salts in Solution and the Effect of Temperature on the Absorption Spectra ofCertain Colored Salts in Solution,” Proc. Am. Philos. Soc. 48(192), 194 (1909).Google Scholar
  18. 18.
    V. S. Gorelik, A. O. Litvinova, and M. F. Umarov, “Fiber-Optic Measurements of Secondary Emission Spectra of Molecular Compounds,” Bull. Lebedev. Phys. Inst. 41(11), 305 (2014).ADSCrossRefGoogle Scholar
  19. 19.
    N. V. Karlov, Lectures on Quantum Electronics (Nauka, Moscow, 1983), p. 319 [in Russian].Google Scholar
  20. 20.
    G. K. Liu, H. Z. Zhuang, and J. V. Beitz, “Structure and Charge Transfer Dynamics of Uranyl Ions in Boron Oxide and Borosilicate Glasses,” Phys. Solid State. 44(8), 1433 (2002) [DOI: 10.1134/1. 1501332].ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. S. Gorelik
    • 1
    • 2
    Email author
  • S. O. Nechipurenko
    • 1
    • 3
  • A. A. Loboyko
    • 1
    • 2
  • N. F. Bunkin
    • 2
    • 4
  • S. V. Gudkov
    • 4
  1. 1.Lebedev Physical Institute of the Russian Academy of SciencesMoscowRussia
  2. 2.Bauman Moscow State Technical UniversityMoscowRussia
  3. 3.Moscow Institute of Physics and Technology (State University), Institutskiy per. 9Moscow oblastRussia
  4. 4.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations