Physics of Wave Phenomena

, Volume 26, Issue 4, pp 285–288 | Cite as

On the Thermal Spectra of Ruby and Sapphire

  • V. M. Marchenko
Physics of Laser Crystals


The temperature dependence of the thermal spectra (in the range from 0.4 to 8 μm) of ruby and sapphire single crystals heated by a 10.6-μm cw electric-discharge CO2 laser has been experimentally and analytically investigated. The shape of the background of the spectral lines of impurity Cr3+ ions in ruby corresponds to the short-wavelength tail of sapphire thermal radiation. The Planck thermal spectrum of sapphire is interpreted in terms of the interaction between electrons and lattice ions in the conduction band.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. M. Marchenko and V. V. Kiselev, “Ruby Emission in the Range 400−800 nm with Excitation by Continuous-WaveCO2 Laser Pulses,” J. Appl. Spectrosc. 83(6), 1042 (2017) [DOI: 10.1007/s10812-017-0405-7].ADSCrossRefGoogle Scholar
  2. 2.
    T. Katsumata, Sh. Komuro, and H. Aizawa, “Fracto-Mechanoluminescence from Ruby and Cr Doped Spinel in Cutting, Grinding and Polishing Processes,” J. Lumin. 154, 511 (2014) [DOI: 10.1016/j. jlumin. 2014. 05. 037].CrossRefGoogle Scholar
  3. 3.
    G. A. Bufetova, S. Ya. Rusanov, V. F. Seregin, Yu. N. Pyrkov, V. A. Kamynin, and V. B. Tsvetkov, “Temperature Distribution Across the Growth Zone of Sapphire (Al2O3) and Yttrium−Aluminum Garnet (YAG) Single Crystal Fibers,” J. Cryst. Growth. 433, 54 (2016) [DOI: 10.1016/j. jcrysgro. 2015. 06. 010].ADSCrossRefGoogle Scholar
  4. 4.
    H. Sai, H. Yugami, K. Nakamura, N. Nakagawa, H. Ohtsubo, and Sh. Maruyama, “Selective Emission of Al2O3/Er3Al5O12 Eutectic Composite for Thermophotovoltaic Generation of Electricity,” Jpn. J. Appl. Phys. 39, 1957 (2000).ADSCrossRefGoogle Scholar
  5. 5.
    N. Nakagawa, H. Ohtsubo, Y. Wak, and H. Yugami, “Thermal Emission Properties of Al2O3/Er3Al5O12 Eutectic Ceramics,” J. Europ. Ceram. Soc. 25(8), 1285 (2005) [DOI: 10.1016/j. jeurceramsoc. 2005. 01. 031].CrossRefGoogle Scholar
  6. 6.
    R. M. Sova, M. J. Linevsky, M. E. Thomas, and F. F. Mark, “High-Temperature Optical Properties of Oxide Ceramics,” Johlls Hopkills APL Technical Digest. 13(3), 368 (1992).ADSGoogle Scholar
  7. 7.
    A. N. Magunov, Spectral Pyrometry (Fizmatlit, Moscow, 2012) [in Russian].Google Scholar
  8. 8.
    D. D. Ragan, R. Gustavsen, and D. Schiferl, “Calibration of the Ruby R1 and R2 Fluorescence Shifts As a Function of Temperature from 0 to 600 K,” J. Appl. Phys. 72(12), 5539 (1992) [DOI: 10.1063/1. 351951].ADSCrossRefGoogle Scholar
  9. 9.
    M. Plank, Introduction to Theoretical Physics, Vol. 5: Theory of Heat (Macmillan, London, 1949).Google Scholar
  10. 10.
    L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 5: Statistical Physics (Pergamon, Oxford, 1980), Pt. 1.Google Scholar
  11. 11.
    E. R. Dobrovinskaya, L. A. Lytvynov, and V. Pishchik, Sapphire (Springer Science+Business Media, LLC, 2009).Google Scholar
  12. 12.
    K. Kitazawa and R. L. Coble, “Electrical Conduction in Single-Crystal and Polycrystalline Al2O3 at High Temperatures,” J. Am. Ceram. Soc. 57(6), 245 (1974) [DOI: 10.1111/j. 1151–2916. 1974. tb10879. x].CrossRefGoogle Scholar
  13. 13.
    V. I. Alfyorov and V. M. Marchenko, “Erbium Oxide Aerodynamic Models in the Hypersonic Flow,” High Temp. 50(4), 512 (2012) [DOI: 10.1134/S0018151X12040013].CrossRefGoogle Scholar
  14. 14.
    H. Daneshvar, R. Prinja, and N. P. Kherani, “Thermophotovoltaics: Fundamentals, Challenges and Prospects,” Appl. En. 159, 560 (2015) [DOI: 10.1016/j. apenergy. 2015. 08. 064].CrossRefGoogle Scholar
  15. 15.
    P. B. Oliete, A. Orera, M. L. Sanjuán, and R. I. Merino, “Selective Thermal Emission of Directionally Solidified Al2O3/Y3−xErxAl5O12 Eutectics: Influence of the Microstructure, Temperature and Erbium Content,” Solar En. Mater. Solar Cells. 174, 460 (2018) [DOI: 10.1016/j. solmat. 2017. 09. 031].CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Prokhorov General Physics Institute of the Russian Academy of SciencesMoscowRussia

Personalised recommendations