Skip to main content
Log in

Interferometric Direction Finding by a Vector-Scalar Receiver

  • Underwater Acoustics
  • Published:
Physics of Wave Phenomena Aims and scope Submit manuscript

Abstract

A method for interferometric direction finding of a broadband sound source in an oceanic waveguide by a single vector-scalar receiver is presented. The method is based on the double Fourier transform of the interference pattern formed during motion. The efficiencies of the proposed direction finding method and the method based on measuring the delay times of signals arriving at spaced scalar receivers are compared based on the natural experiment results. The noise immunity of the interferometric direction finding method is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. A. Gordienko, Vector-Phase Methods in Acoustics (Fizmatlit,Moscow, 2007) [in Russian].

    Google Scholar 

  2. G. L. D’Spain, J. C. Luby, G. R. Wilson, and R. A. Gramann, “Vector Sensors and Vector Sensor Line Arrays: Comments on Optimal Array Gain and Detection,” J. Acoust. Soc. Am. 120(1), 171 (2006).

    Article  Google Scholar 

  3. V. A. Gordienko, E. L. Gordienko, N. V. Krasnopistsev, and V. N. Nekrasov, “Interference Immunity of Hydroacoustic Power Flux Receive Systems,” Acoust. Phys. 54(5), 670 (2008).

    Article  ADS  Google Scholar 

  4. V. A. Shchurov, V. P. Kuleshov, and A. V. Cherkasov, “Vortex Properties of the Acoustic Intensity Vector in a Shallow Sea,” Acoust. Phys. 57(6), 851 (2011).

    Article  ADS  Google Scholar 

  5. A. I. Belov and G. N. Kuznetsov, “Estimating the Acoustic Characteristics of Surface Layers of the Sea Bottom Using Four-Component Vector-Scalar Receivers,” Acoust. Phys. 62(2), 194 (2016).

    Article  ADS  Google Scholar 

  6. N. I. Belova, G. N. Kuznetsov, and A. N. Stepanov, “Experimental Research of the Interference and Phase Structure of the Power Flux from a Local Source in ShallowWater,” Acoust. Phys. 62(3), 328 (2016).

    Article  ADS  Google Scholar 

  7. A. I. Belov and G. N. Kuznetsov, “Direction Finding and Suppression of Vector-Scalar Sound Signals in Shallow Water Taking into Account their Correlation and Mode Structure,” Acoust. Phys. 62(3), 319 (2016).

    Article  ADS  Google Scholar 

  8. J. P. Ianniello, “Recent Developments is Sonar Signal Processing,” IEEE Signal Proc. Mag. 15(4), 27 (1998).

    Google Scholar 

  9. G. S. Malyshkin and G. B. Sidel’nikov, “Optimal and Adaptive Methods of Processing Hydroacoustic Signals (Review),” Acoust. Phys. 60(5), 570 (2014).

    Article  ADS  Google Scholar 

  10. A. G. Sazontov and A. I. Malekhanov, “Matched Field Signal Processing in Underwater Sound Channels (Review),” Acoust. Phys. 61(2), 213 (2015).

    Article  ADS  Google Scholar 

  11. G. N. Kuznetsov, V. M. Kuz’kin, and S. A. Pereselkov, “Spectrogram and Localization of a Sound in Shallow Water,” Acoust. Phys. 63(4), 449 (2017).

    Article  ADS  Google Scholar 

  12. T. N. Besedina, G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Estimation of the Depth of a Stationary Sound Source in Shallow Water,” Phys. Wave Phenom. 23(4), 292 (2015) [DOI: 10. 3103/S1541308X1504007X].

    Article  ADS  Google Scholar 

  13. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and D. Yu. Prosovetskiy, “Wave Method for Estimating the Sound Source Depth in a OceanicWaveguide,” Phys. Wave Phenom. 24(4), 310 (2016) [DOI: 10. 3103/S1541308X16040129].

    Article  ADS  Google Scholar 

  14. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, and I. V. Kaznacheev, “Noise Source Localization in Shallow Water,” Phys. Wave Phenom. 25(2), 156 (2017) [DOI: 10. 3103/S1541308X17020145].

    Article  ADS  Google Scholar 

  15. G. N. Kuznetsov, V. M. Kuz’kin, S. A. Pereselkov, I. V. Kaznacheev, and V. A. Grigor’ev, “Interferometric Method for Estimating the Velocity of a Noise Sound Source and the Distance to It in Shallow Water Using a Vector-Scalar Receiver,” Phys. Wave Phenom. 25(4), 299 (2017) [DOI: 10. 3103/S1541308X17040100].

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Kuz’kin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuz’kin, V.M., Pereselkov, S.A., Kuznetsov, G.N. et al. Interferometric Direction Finding by a Vector-Scalar Receiver. Phys. Wave Phen. 26, 63–73 (2018). https://doi.org/10.3103/S1541308X18010090

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1541308X18010090

Navigation