Physics of Wave Phenomena

, Volume 26, Issue 1, pp 56–62 | Cite as

Influence of Quantum Effects on the Magnetic Field Behavior in Overdense Plasma

  • M. K. Khadivi Borougeni
  • L. Rajaei
  • A. Gharaati
  • S. Miraboutalebi
Electromagnetic Waves in Quantum Overdense Plasma
  • 5 Downloads

Abstract

We study the conditions for the anomalous transmission of electromagnetic waves through quantum overdense plasma. We show that this anomalous transmission is triggered due to the excitation of surface waves, as was observed in the classical overdense plasma. The conditions for the excitation of surface waves are obtained by studying the dispersion relation within the framework of quantum hydrodynamics. The corresponding consequences at the classical limits are consistent with the previous studies. In comparison with the classical regimes, the quantum dispersion curve exhibits an asymptotic behavior which indicates significant effects, in particular, at large wavelengths. Herein, to create the required evanescent waves, we consider the quantum plasma to be placed between two ordinary prisms and dielectrics. The effects of the main parameters, such as the permittivity of the prisms and dielectrics and the Fermi velocity, on the rate of the transmission and the magnetic field propagation are also evaluated.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Manfredi, “How to Model Quantum Plasmas,” Fields Inst. Commun. 46, 263 (2005).MathSciNetMATHGoogle Scholar
  2. 2.
    P. K. Shukla and B. Eliasson, “Novel Attractive Force between Ions in Quantum Plasmas,” Phys. Rev. Lett. 108(16), (2012): 165007.ADSCrossRefGoogle Scholar
  3. 3.
    A. Ghoshal and Y. K. Ho, “Ground States of Helium in Exponential-Cosine-Screened Coulomb Potentials,” J. Phys. B: Atom., Molec., Opt. Phys. 42(7), 075002 (2009).ADSCrossRefGoogle Scholar
  4. 4.
    G. Chabrier, F. Douchin, and A. Y. Potekhin, “Dense Astrophysical Plasmas,” J. Phys.: Cond. Matter. 14(40), 9133 (2002).ADSGoogle Scholar
  5. 5.
    M. Marklund and P. K. Shukla, “Nonlinear Collective Effects in Photon−Photon and Photon−Plasma Interactions,” Rev. Mod. Phys. 78(2), 591 (2006).ADSCrossRefGoogle Scholar
  6. 6.
    Yu. L. Klimontovich and V. P. Silin, “To the Theory of Excitation Spectra of Macroscopic Systems,” Dokl. Akad. Nauk SSSR. 82(3), 361 (1952) [in Russian].Google Scholar
  7. 7.
    J. Lindhard, “On the Properties of a Gas of Charged Particles,” DanskeMat. -Fys. Medd. Det Kgl. Danske Vidensk. Selskab. 28(8), 1 (1954).MathSciNetMATHGoogle Scholar
  8. 8.
    N. D. Mermin, “Lindhard Dielectric Function in the Relaxation-Time Approximation,” Phys. Rev. B. 1(5), 2362 (1970).ADSCrossRefGoogle Scholar
  9. 9.
    Jun Zhu, Hang Zhao, and Min Qiu, “Surface Waves on the Relativistic Quantum Plasma Half-Space,” Phys. Lett. A. 77(28), 1736 (2013).ADSMathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Swarniv Chandra, Parthasona Maji, and Basudev Ghosh, “Propagation of Nonlinear Surface Waves in Relativistically Degenerate Quantum Plasma Half-Space,” Int. J. Math., Comp., Phys., Electr. Comput. Eng. 8(5),842 (2014).Google Scholar
  11. 11.
    M. Lazar, P. K. Shukla, and A. Smolyakov, “Surface Waves on a Quantum Plasma Half-Space,” Phys. Plasmas. 14(12), 124501 (2007).ADSCrossRefGoogle Scholar
  12. 12.
    F. Haas, “A Magnetohydrodynamic Model for Quantum Plasmas,” Phys. Plasmas. 12(6), 062117 (2005).ADSCrossRefGoogle Scholar
  13. 13.
    Yu. O. Tyshetskiy, S. V. Vladimirov, and R. Kompaneets, “Peculiarities of Surface Plasmons inQuantum Plasmas,” J. Plasma Phys. 79(4), 387 (2013).ADSCrossRefGoogle Scholar
  14. 14.
    A. Bret, “Filamentation Instability in a Quantum Plasma,” Phys. Plasmas. 14(8), 084503 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    R. Dragila, B. Luther-Davies, and S. Vukovic, “High Transparency of Classically Opaque Metallic Films,” Phys. Rev. Lett. 55(10), 1117 (1985).ADSCrossRefGoogle Scholar
  16. 16.
    R. A. Shelby, D. R. Smith, S. C. Nemat-Nasser, and S. Schultz, “Microwave Transmission through a Two-Dimensional, Isotropic, Left-Handed Metamaterial,” Appl. Phys. Lett. 78(4), 489 (2001).ADSCrossRefGoogle Scholar
  17. 17.
    Yu. P. Bliokh, J. Felsteiner, and Ya. Z. Slutsker, “Total Absorption of an Electromagnetic Wave by an Overdense Plasma,” Phys. Rev. Lett. 95(16), 165003 (2005).ADSCrossRefGoogle Scholar
  18. 18.
    Yu. P. Bliokh, “Plasmon Mechanism of Light Transmission through a Metal Film or a Plasma Layer,” Opt. Commun. 259(2), 436 (2006).ADSCrossRefGoogle Scholar
  19. 19.
    L. Rajaei, S. Mirabotalebi, and B. Shokri, “Transmission of Electromagnetic Waves through a Warm Over-Dense Plasma Layer with a Dissipative Factor,” Phys Scripta. 84(1), 015506 (2011).ADSCrossRefMATHGoogle Scholar
  20. 20.
    S. Miraboutalebi, L. Rajaei, and M. K. Khadivi Borogeni, “Plasmon Resonance Coupling in Cold Overdense Dissipative Plasma,” J. Theor. Appl. Phys. 7(1), 24 (2013).ADSCrossRefGoogle Scholar
  21. 21.
    L. Rajaei, “Interaction of Electromagnetic Wave with Quantum Over Dense Plasma Layer,” Eur. Phys. J. 70(11), 231 (2016).ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. K. Khadivi Borougeni
    • 1
  • L. Rajaei
    • 2
  • A. Gharaati
    • 1
  • S. Miraboutalebi
    • 3
  1. 1.Department of PhysicsPayame Noor UniversityTehranIran
  2. 2.Department of PhysicsUniversity of QomQomIran
  3. 3.Department of Physics, Islamic Azad UniversityNorth Tehran BranchTehranIran

Personalised recommendations