Advertisement

Physics of Wave Phenomena

, Volume 25, Issue 2, pp 119–123 | Cite as

Polarization properties of surface plasmon polaritons at the boundary of topological insulators with the axion effect

  • D. O. IgnatyevaEmail author
  • A. N. Kalish
  • V. I. Belotelov
  • A. K. Zvezdin
Plasmonic Excitations in Photonics and Optoelectronics

Abstract

Properties of surface plasmon polariton waves are theoretically studied in structures containing topological insulators with the axion effect. The effect of axion properties on dispersion, localization, and polarization of plasmon polaritons is analyzed. A possibility of determining the axion effect from the variation in the plasmon-polariton polarization is shown, and conditions for enhancement of polarization effects are revealed in waveguide structures of the dielectric−metal−dielectric type.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. A. Maier, Plasmonics: Fundamentals and Applications (Springer Science + Business Media LLC, 2007).Google Scholar
  2. 2.
    J. Homola, “Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species,” Chem. Rev. 108, 462 (2008).CrossRefGoogle Scholar
  3. 3.
    K. M. Mayer and J. H. Hafner, “Localized Surface Plasmon Resonance Sensors,” Chem. Rev. 111, 3828 (2011).CrossRefGoogle Scholar
  4. 4.
    V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, and R. Bratschitsch, “Active Magneto-Plasmonics in Hybrid Metal-Ferromagnet Structures,” Nature Photon. 4, 107 (2010).ADSCrossRefGoogle Scholar
  5. 5.
    V. Belotelov, D. Bykov, L. Doskolovich, A. Kalish, and A. Zvezdin, “Giant Transversal Kerr Effect in Magneto-Plasmonic Heterostructures: The Scattering-Matrix Method,” JETP. 137, 932 (2010).Google Scholar
  6. 6.
    A. Kalish, D. Ignatyeva, M. Bayer, V. Belotelov, L. Kreilkamp, and A. Sukhorukov, “Transformation of Mode Polarization in Gyrotropic Plasmonic Waveguides,” Laser Phys. 24, 094006 (2014).ADSCrossRefGoogle Scholar
  7. 7.
    A. P. Sukhorukov, D. O. Ignatyeva, and A. N. Kalish, “Terahertz and Infrared Surface Wave Beams and Pulses on Gyrotropic, Nonlinear and Metamaterial Interfaces,” J. Infrared, Millimeter, and Terahertz Waves. 32, 1223 (2011).CrossRefGoogle Scholar
  8. 8.
    D. O. Ignatyeva, A. N. Kalish, G. Y. Levkina, and A. P. Sukhorukov, “Surface Plasmon Polaritons at Gyrotropic Interfaces,” Phys. Rev. A. 85, 043804 (2012).ADSCrossRefGoogle Scholar
  9. 9.
    G. Mi and V. Van, “Characteristics of Surface Plasmon Polaritons at a Chiral-Metal Interface,” Opt. Lett. 39, 2028 (2014).ADSCrossRefGoogle Scholar
  10. 10.
    M. Z. Hasan and C. L. Kane, “Colloquium: Topological Insulators,” Rev. Mod. Phys. 82, 3045 (2010).ADSCrossRefGoogle Scholar
  11. 11.
    F. Wilczek, “Two Applications of Axion Electrodynamics,” Phys. Rev. Lett. 58, 1799 (1987).ADSCrossRefGoogle Scholar
  12. 12.
    R. Li, J. Wang, X.-L. Qi, and S.-C. Zhang, “Dynamical Axion Field in Topological Magnetic Insulators,” Nature Phys. 6, 284 (2010).ADSCrossRefGoogle Scholar
  13. 13.
    W.-K. Tse and A. MacDonald, “Giant Magneto-Optical Kerr Effect and Universal Faraday Effect in Thin-Film Topological Insulators,” Phys. Rev. Lett. 105, 057401 (2010).ADSCrossRefGoogle Scholar
  14. 14.
    M.-C. Chang and M.-F. Yang, “Optical Signature of Topological Insulators,” Phys. Rev. B. 80, 113304 (2009).ADSCrossRefGoogle Scholar
  15. 15.
    F. Liu, J. Xu, and Y. Yang, “Polarization Conversion of Reflected Electromagnetic Wave from Topological Insulator,” JOSA B. 31, 735 (2014).ADSCrossRefGoogle Scholar
  16. 16.
    J. Qi, H. Liu, and X. Xie, “Surface Plasmon Polaritons in Topological Insulators,” Phys. Rev. B. 89, 155420 (2014).ADSCrossRefGoogle Scholar
  17. 17.
    A. Karch, “Surface Plasmons and Topological Insulators,” Phys. Rev. B. 83, 245432 (2011).ADSCrossRefGoogle Scholar
  18. 18.
    P. Di Pietro, M. Ortolani, O. Limaj, A. Di Gaspare, V. Giliberti, F. Giorgianni, M. Brahlek, N. Bansal, N. Koirala, S. Oh, P. Calvani and S. Lupi, “Observation of Dirac Plasmons in a Topological Insulator,” Nature Nanotech. 8, 556 (2013).ADSCrossRefGoogle Scholar
  19. 19.
    D. K. Efimkin, Y. E. Lozovik, and A. A. Sokolik, “Collective Excitations on a Surface of Topological Insulator,” Nanoscale Res. Lett. 7, 1 (2012).CrossRefGoogle Scholar
  20. 20.
    Y.-P. Lai, I.-T. Lin, K.-H. Wu, and J.-M. Liu, “Plasmonics in Topological Insulators,” Nanomater. Nanotech. 4(13), 1 (2014).Google Scholar

Copyright information

© Allerton Press, Inc. 2017

Authors and Affiliations

  • D. O. Ignatyeva
    • 1
    • 2
    Email author
  • A. N. Kalish
    • 1
    • 2
  • V. I. Belotelov
    • 1
    • 2
  • A. K. Zvezdin
    • 2
    • 3
  1. 1.Lomonosov Moscow State UniversityMoscowRussia
  2. 2.Russian Quantum Center, Business-center “Ural”MoscowRussia
  3. 3.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations