Advertisement

Physics of Wave Phenomena

, Volume 23, Issue 3, pp 180–185 | Cite as

Pseudospin splitting of the energy spectrum of planar polytype graphene-based superlattices

  • P. V. RatnikovEmail author
  • A. P. Silin
Quantum Electrodynamics of Superlattices

Abstract

The energy spectrum of planar polytype graphene-based superlattices has been investigated. It is shown that their energy spectrum undergoes pseudospin splitting due to the asymmetry of quantum wells forming the superlattice potential profile.

Keywords

Energy Spectrum Dispersion Relation Wave Phenomenon Fermi Velocity Silin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L.A. Chernozatonskii, P.B. Sorokin, E.E. Belova, J. Brüning, and A.S. Fedorov, “Metal-Semiconductor (Semimetal) Superlattices on a Graphite Sheet with Vacancies,” JETP Lett. 84(3), 115 (2006).CrossRefGoogle Scholar
  2. 2.
    L.A. Chernozatonskii, P.B. Sorokin, E.E. Belova, J. Brüning, and A.S. Fedorov, “Superlattices Consisting of “Lines” of Adsorbed Hydrogen Atom Pairs on Graphene,” JETP Lett. 85(1), 77 (2007).CrossRefADSGoogle Scholar
  3. 3.
    A. Isacsson, L.M. Jonsson, J.M. Kinaret, and M. Jonson, “Electronic Superlattices in Corrugated Graphene,” Phys. Rev. B. 77, 035423 (2008).CrossRefADSGoogle Scholar
  4. 4.
    F. Guinea, M.I. Katsnelson, and M.A.H. Vozmediano, “Midgap States and Charge Inhomogeneities in Corrugated Graphene,” Phys. Rev. B. 77, 075422 (2008).CrossRefADSGoogle Scholar
  5. 5.
    C. Bai and X. Zhang, “Klein Paradox and Resonant Tunneling in a Graphene Superlattice,” Phys. Rev. B. 76, 075430 (2007).CrossRefADSGoogle Scholar
  6. 6.
    M. Barbier, F.M. Peeters, P. Vasilopoulos, J.M. Pereira, “Dirac and Klein-Gordon Particles in One- Dimensional Periodic Potentials,” Phys. Rev. B. 77, 115446 (2008).CrossRefADSGoogle Scholar
  7. 7.
    C.-H. Park, L. Yang, Y.-W. Son, M.L. Cohen, and S.G. Louie, “New Generation of Massless Dirac Fermions in Graphene under External Periodic Potentials,” Phys. Rev. Lett. 101, 126804 (2008).CrossRefADSGoogle Scholar
  8. 8.
    C.-H. Park, Y.-W. Son, L. Yang, M.L. Cohen, and S.G. Louie, “Electron Beam Supercollimation in Graphene Superlattices,” Nano Lett. 8, 2920 (2008).CrossRefADSGoogle Scholar
  9. 9.
    M.R. Masir, P. Vasilopoulos, A. Matulis, and F.M. Peeters, “Direction-Dependent Tunneling through Nanostructured Magnetic Barriers in Graphene,” Phys. Rev. B. 77, 235443 (2008).CrossRefADSGoogle Scholar
  10. 10.
    M.R. Masir, P. Vasilopoulos, and F.M. Peeters, “Tunneling, Conductance, and Wavevector Filtering through Magnetic Barriers in Bilayer Graphene,” Phys. Rev. B. 79, 035409 (2009).CrossRefADSGoogle Scholar
  11. 11.
    S. Ghosh and M. Sharma, “Electron Optics with Magnetic Vector Potential Barriers in Graphene,” J. Phys.: Condens. Matter. 21, 292204 (2009).Google Scholar
  12. 12.
    P.B. Sorokin and L.A. Chernozatonskii, “Graphene- Based Semiconductor Nanostructures,” Phys. Usp. 56(2), 105 (2013).CrossRefADSGoogle Scholar
  13. 13.
    P.V. Ratnikov, “Superlattice Based on Graphene on a Strip Substrate,” JETP Lett. 90(6), 469 (2009).CrossRefADSGoogle Scholar
  14. 14.
    P.V. Ratnikov and A.P. Silin, “Size Quantization in Planar Graphene-Based Heterostructures: Pseudospin Splitting, Interface States, and Excitons,” JETP. 114(3), 512 (2012).CrossRefADSGoogle Scholar
  15. 15.
    A.V. Kolesnikov and A.P. Silin, “The Energy Spectra of Narrow-Gap Semiconductors: Spin Splitting in the Case of Asymmetry,” J. Phys.: Condens. Matter. 9, 10929 (1997).ADSGoogle Scholar
  16. 16.
    E.A. Andryushin, A.P. Silin, and S.A. Vereshchagin, “Spin Splitting of Energy Levels in Asymmetric Narrow-Gap Semiconducting Heterostructures,” Phys. Low Dim. Struct. 3/4, 85 (2000).Google Scholar
  17. 17.
    P.V. Ratnikov and A.P. Silin, “Novel Type of Superlattices Based on Gapless Graphene with the Alternating Fermi Velocity,” JETP Lett. 100(5), 311 (2014).CrossRefADSGoogle Scholar
  18. 18.
    P.V. Ratnikov and A.P. Silin, “Boundary states in graphene heterojunctions,” Phys. Solid State. 52(8), 1763 (2010).CrossRefADSGoogle Scholar
  19. 19.
    A.P. Silin and S.V. Shubenkov, “Boundary Conditions for Narrow-Gap Heterostructures Described by the Dirac Equation,” Phys. Solid State. 40(7), 1223 (1998).CrossRefADSGoogle Scholar
  20. 20.
    M.A. Herman, Semiconductor Superlattices (Akademie- Verlag, Berlin, 1986).Google Scholar
  21. 21.
    I. Zanella, S. Guerini, S.B. Fagan, J.M. Filho, and G.S. Filho, “ChemicalDoping-Induced GapOpening and Spin Polarization in Graphene,” Phys. Rev. B. 77, 073404 (2008).CrossRefADSGoogle Scholar
  22. 22.
    Yu.A. Bychkov and E.I. Rashba, “Properties of a 2D Electron Gas with Lifted Spectral Degeneracy,” JETP Lett. 39(2), 78 (1984)ADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  1. 1.Lebedev Physical InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations