Physics of Wave Phenomena

, Volume 23, Issue 1, pp 46–51 | Cite as

Optical properties of 1D and 2D approximants of quasi-crystalline structures

  • P. V. Korolenko
  • P. A. Logachev
  • Yu. V. Ryzhikova
Optics of Quasi-Crystals


The possibility of identifying 1D and 2D approximants of quasi-crystalline structures, based on recording local patterns and scaling parameters in probe-beam fields, is considered. The effect of structural defects on the shape of pattern formations is estimated.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A.A. Potapov, P.A. Ushakov, and A.Kh. Gil’mutdinov, “Elements, Devices, and Methods for Fractal Communication Technology, Electronics, and Nanotechnology,” Phys. Wave Phenom. 18(2), 119 (2010) [DOI: 10.3103/S1541308X10020068].CrossRefADSGoogle Scholar
  2. 2.
    Optics of Aperiodic Structures: Fundamentals and Device Applications. Ed. by L.D. Negro (CRC Press, Taylor & Francis Group, 2014).Google Scholar
  3. 3.
    E.L. Albuquerque and M.G. Cottam, “Theory of Elementary Excitation in Quasiperiodic Structures,” Phys. Rep. 376, 225 (2003).CrossRefADSGoogle Scholar
  4. 4.
    P.N. D’yachenko and Yu.V. Miklyaev, “Two-Dimensional Approximants of Photonic Quasi-Crystals, Obtained by Holographic Lithography,” Computer Opt. No. 30, 23 (2006) [in Russian].Google Scholar
  5. 5.
    M. Florescu, S. Torquato, and P.J. Steinhardt, “Complete Band Gaps in Two-Dimensional Photonic Quasicrystals,” Phys. Rev. B. 80, 155112 (2009).CrossRefADSGoogle Scholar
  6. 6.
    P.V. Korolenko, S.B. Ryzhikov, and Yu.V. Ryzhikova, “Pattern Stability in Diffraction of Light from Structures with Self-Similarity Symmetry,” Phys. Wave Phenom. 21(4), 256 (2013) [DOI: 10.3103/S1541308X13040031].CrossRefADSGoogle Scholar
  7. 7.
    P.D. Derlugyan, V.V. Ivanov, I.V. Ivanova, V.T. Loginov, G.A. Danyushina, V.G. Shishka, and I.N. Shcherbakov, “Fractal Structures of 2D Space as a Possible Approximants of the Interphase Borders Configurations and the Phase Distributions onto Surface of Antifrictional Composition Coatings,” Sovremennye Naukoemkie Tekhnologii. No. 9, 86 (2013) [in Russian].Google Scholar
  8. 8.
    D. Singh, Y. Yun, W. Wan, B. Grushko, X. Zou, and S. Hovmoller, “A complex pseudo-decagonal quasicrystal approximant, Al37(Co,Ni)15.5, solved by rotation electron diffraction,” J. Appl. Crystallogr. 47, 215 (2014).CrossRefGoogle Scholar
  9. 9.
    M.A. Faddeev, “Approximants of One-Dimensional Quasi-Crystals,” Vestn. Nizhegorod. Univ., Ser. Fiz. Tverd. Tela. No. 1, 44 (2001) [in Russian].Google Scholar
  10. 10.
    E. Macia, “The Role of Aperiodic Order in Science and Technology,” Rep. Prog. Phys. 69, 397 (2006).CrossRefADSGoogle Scholar
  11. 11.
    A.M. Zotov, E.G. Kim, P.V. Korolenko, and Yu.V. Ryzhikova, “Modeling of Aperiodic Structures with Optical Scaling Characteristics,” Electromagnetic Waves and Electronic Systems. 18(12), 10 (2013) [in Russian].Google Scholar
  12. 12.
    Tsai An Pang, “Icosahedral Clusters, Icosaheral Order and Stability of Quasicrystals — a View of Metallurgy,” Sci. Technol. Adv. Mater. 9, 013008 (2008).CrossRefGoogle Scholar
  13. 13.
    P.V. Korolenko, A.Yu. Mishin, and Yu.V. Ryzhikova, “Scaling in the Characteristics of Aperiodic Multilayer Structures,” J. Opt. Technol. 79(12), 754 (2012).CrossRefGoogle Scholar
  14. 14.
    A.N. Bogolyubov, A.A. Petukhov, and N.E. Shapkina, “Optical Diffraction on Fractal Lattices,” Moscow Univ. Phys. Bull. 63(2), 87 (2008).CrossRefADSGoogle Scholar

Copyright information

© Allerton Press, Inc. 2015

Authors and Affiliations

  • P. V. Korolenko
    • 1
  • P. A. Logachev
    • 1
  • Yu. V. Ryzhikova
    • 1
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations