Physics of Wave Phenomena

, Volume 21, Issue 1, pp 68–73 | Cite as

Comparative analysis of the spectral and scaling characteristics of optical aperiodic-structure elements

  • P. V. Korolenko
  • A. Yu. Mishin
  • Yu. V. Ryzhikova
Wave in Fractal Structures


Comparative analysis is given for the properties of deterministic aperiodic diffraction gratings and multilayer structures based on one-dimensional quasicrystal models. Quantitative relation is established between the self-similarity of their structures and the scaling of the spectral characteristics. Some applications of aperiodic devices are discussed.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. L. Albuquerque and M. G. Cottam, “Theory of Elementary Excitations in Quasiperiodic Structures,” Phys. Rep. 376(4–5), 225 (2003).ADSCrossRefGoogle Scholar
  2. 2.
    L. N. Makarava, M. M. Nazarov, I.A. Ozheredov, A.P. Shkurinov, A.G. Smirnov, and S.V. Zhukovsky, “Fibonacci-Like Photonic Structure for Femtosecond Pulse Compression,” Phys. Rev. E. 75(3), 036609 (2007).ADSCrossRefGoogle Scholar
  3. 3.
    A. Barriuso, J. Monzón, L. Sónchez-Soto, and A. Felipe, “Comparing Omnidirectional Reflection from Periodic and Quasiperiodic One-Dimensional Photonic Crystals,” Opt. Exp. 13(11), 3913 (2005).ADSCrossRefGoogle Scholar
  4. 4.
    S. Golmohammadi and A. Rostami, “Optical Filters Using Optical Multi-Layer Structures for Optical Communication Systems,” Fiber Integr. Opt. 29(3), 209 (2010).CrossRefGoogle Scholar
  5. 5.
    A. A. Potapov, P. A. Ushakov, and A.Kh. Gil’mutdinov, “Elements, Devices, and Methods for Fractal Communication Technology, Electronics, and Nanotechnology,” Phys. Wave Phenom. 18(2), 119 (2010).ADSCrossRefGoogle Scholar
  6. 6.
    K. Esaki, M. Sato, and M. Kohmoto, “Wave Propagation Through Cantor-Set Media: Chaos, Scaling, and Fractal Structures,” Phys. Rev. E. 79(5), 056226 (2009).MathSciNetADSCrossRefGoogle Scholar
  7. 7.
    J. Brillhart and P. Morton, “A Case Study in Mathematical Research: The Golay-Rudin-Shapiro Sequence,” Am.Math. Mon. 103(10), 854 (1996).MathSciNetMATHCrossRefGoogle Scholar
  8. 8.
    E. M. Nascimento, F.A.B.F. deMoura, and M. L. Lyra, “Suppressed Transmission in Aperiodically Modulated Multilayered Dielectric Structures,” Photon. Nanostructures-Fundamentals Appl. 7(2), 101 (2009).ADSCrossRefGoogle Scholar
  9. 9.
    J. Feder, Fractals (Plenum Press, N.Y., 1988).MATHGoogle Scholar
  10. 10.
    A. M. Zotov, P.V. Korolenko, and A. Yu. Mishin, “Scaling in the Optical Characteristics of Aperiodic Structures with Self-Similarity Symmetry,” Cryst. Rep. 55(6), 964 (2010).CrossRefGoogle Scholar
  11. 11.
    E. S. Putilin, Optical Coatings (SPbGUITMO, St.Petersburg, 2005) [in Russian].Google Scholar
  12. 12.
    N. M. Astafieva, “Wavelet Analysis: Basic Theory and Some Applications,” Phys.-Usp. 39(11), 1085 (1996).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  • P. V. Korolenko
    • 1
  • A. Yu. Mishin
    • 1
  • Yu. V. Ryzhikova
    • 1
  1. 1.Faculty of PhysicsLomonosov Moscow State UniversityMoscowRussia

Personalised recommendations