Advertisement

Physics of Wave Phenomena

, Volume 21, Issue 1, pp 31–37 | Cite as

Accelerated alpha-decay of uranium isotopes induced by exposure of aqueous solution of uranium salt with gold nanoparticles to laser radiation

  • A. V. SimakinEmail author
  • G. A. Shafeev
Interaction of Laser Radiation With Matter

Abstract

Laser-induced accelerated alpha-decay of 232U nuclei under laser exposure of Au nanoparticles in aqueous solutions of uranium salt has been experimentally studied. It is demonstrated that the decrease in the alpha-activity depends strongly on the peak intensity of laser radiation in the liquid and reaches a maximum at 1012–1013Wcm−2. The decrease in the alpha-activity of the exposed solutions is accompanied by deviation of gamma-activities of daughter nuclides of 232U from their equilibrium values. Experimental data on the accelerated alpha-decay of 238U under similar experimental conditions are also presented. Possible mechanisms of laser effect on the alpha-activity are discussed in terms of the amplification of the electric field of laser wave on metallic nanoparticles.

Keywords

Uranium Wave Phenomenon Laser Exposure Uranium Isotope Copper Vapor Laser 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Wong, A. Grigoriu, J. Roslund, T.-S. Ho, and H. Rabitz, “Laser-Driven Direct Quantum Control of Nuclear Excitations,” Phys. Rev. A. 84, 053429 (2011).ADSCrossRefGoogle Scholar
  2. 2.
    K.W. D. Ledingham, P. McKenna, and R.P. Singhal, “Applications for Nuclear Phenomena Generated by Ultra-Intense Lasers,” Science. 300, 1107 (2003).ADSCrossRefGoogle Scholar
  3. 3.
    J. A. Bounds and P. Dyer, “Search for Nuclear Excitation by Laser-Driven Electron Motion,” Phys. Rev. C. 46(3), 852 (1992).ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Andreev, V.M. Gordienko, A. B. Savel’ev, E.V. Tkalya, and A. M. Dykhne, “Excitation of Nuclei in a Hot, Dense Plasma: Feasibility of Experiments with 201Hg,” JETP Lett. 66(5), 331 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    A.V. Andreev, R.V. Volkov, V. M. Gordienko, P. M. Mikheev, A.B. Savel’ev, E.V. Tkalya, O.V. Chutko, A. A. Shashkov, and A.M. Dykhne, “Excitation of Tantalum-181 Nuclei in a High-Temperature Femtosecond Laser Plasma,” JETP Lett. 69(5), 371 (1999).ADSCrossRefGoogle Scholar
  6. 6.
    H. Schwoerer, P. Gibbon, S.D Üsterer, R. Behrens, C. Ziener, C. Reich, and R. Sauerbrey, “MeV X Rays and Photoneutrons from Femtosecond Laser-Produced Plasmas,” Phys. Rev. Lett. 86(11), 2317 (2001).ADSCrossRefGoogle Scholar
  7. 7.
    V. S. Belyaev, A.P. Matafonov, V. I. Vinogradov, V.P. Krainov, V. S. Lisitsa, A. S. Roussetski, G.N. Ignatyev, and V.P. Andrianov, “Observation of Neutronless Fusion Reactions in Picosecond Laser Plasmas,” Phys. Rev. E. 72(2), 026406 (2005).ADSCrossRefGoogle Scholar
  8. 8.
    A.V. Simakin and G. A. Shafeev, “Initiation of Nuclear Reactions under Laser Irradiation of Metal Nanoparticles in the Presence of Thorium Aqua Ions,” Phys. Wave Phenom. 16(4), 268 (2008) [DOI: 10.3103/S1541308X08040031].ADSCrossRefGoogle Scholar
  9. 9.
    A.V. Simakin and G. A. Shafeev, arXiv:0906.4268 (June 2009).Google Scholar
  10. 10.
    A.V. Simakin and G. A. Shafeev, “Initiation of Nuclear Reactions under Laser Irradiation of Au Nanoparticles in the Presence of Thorium Aqua-Ions,” J. Optoelectron. Adv. Mater. 12(3), 432 (2010).Google Scholar
  11. 11.
    A.V. Simakin and G. A. Shafeev, “Initiation of Nuclear Reactions under Laser Irradiation of Au Nanoparticles in the Aqueous Solution of Uranium Salt,” Appl. Phys. A. 101(1), 199 (2010).ADSCrossRefGoogle Scholar
  12. 12.
    A.V. Simakin and G. A. Shafeev, “Effect of Laser Irradiation of Nanoparticles in Aqueous Uranium Salt Solutions on Nuclide Activity,” Quantum Electron. 41(7), 614 (2011).ADSCrossRefGoogle Scholar
  13. 13.
    S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, and G.A. Shafeev, “Generation of Ag Nanospikes via Laser Ablation in Liquid Environment and Their Activity in SERS of Organic Molecules,” Appl. Phys. A. 89(2), 373 (2007).ADSCrossRefGoogle Scholar
  14. 14.
    S. Lau Truong, G. Levi, F. Bozon-Verduraz, A.V. Petrovskaya, A.V. Simakin, and G.A. Shafeev, “Generation of Nanospikes Via Laser Ablation of Metals in Liquid Environment and Their Activity in Surface-Enhanced Raman Scattering of Organic Molecules,” Appl. Surf. Sci. 254(4), 1236 (2007).ADSCrossRefGoogle Scholar
  15. 15.
    E.V. Barmina, C. Lau Truong, F. Bozon-Verdyura, Zh. Levi, A.V. Simakin, and G.A. Shafeev, “Generation of Surface Nanostructures on Nickel by Liquid-Phase Laser Ablation and Their Surface-Enhanced Raman Scattering Activity,” Quantum Electron. 40(4), 346 (2010).ADSCrossRefGoogle Scholar
  16. 16.
    F. Bosch, T. Faestermann, J. Friese, F. Heine, P. Kienle, E. Wefers, K. Zeitelhack, K. Beckert, B. Franzke, O. Klepper, C. Kozhuharov, G. Menzel, R. Moshammer, F. Nolden, H. Reich, B. Schlitt, M. Steck, T. Stöhlker, T. Winkler, and K. Takahashi, “Observation of Bound-State β Decay of Fully Ionized 187Re: 187Re-187Os Cosmochronometry,” Phys. Rev. Lett. 77(26), 5190 (1996).ADSCrossRefGoogle Scholar
  17. 17.
    D.V. Filippov, “Increase in the Probability of Allowed Electron Beta Decays in a Superstrong Magnetic Field,” Phys. At. Nucl. 70(2), 258 (2007).CrossRefGoogle Scholar
  18. 18.
    D.V. Filippov, “Increase in the Probability of Forbidden Electron Beta Decays in a Superstrong Magnetic Field,” Phys. At. Nucl. 70(12), 2016 (2007).CrossRefGoogle Scholar
  19. 19.
    Yu.P. Gangrsky, F. F. Karpeshin, M. B. Trzhaskovskaya, and Yu. E. Penionzhkevich, “Effect of Beta-Electron Capture to a Bound State on Delayed-Neutron Emission from Fission Fragments,” Phys. At. Nucl. 71(6), 951 (2008).CrossRefGoogle Scholar
  20. 20.
    A.V. Simakin and G. A. Shafeev, arxiv.org/abs/1112.6276 at www.arxiv.org
  21. 21.
    A.V. Simakin and G. A. Shafeev, “Accelerated Alpha Decay under Laser Exposure of Metallic Nanoparticles in Aqueous Solutions of Uranium Salt,” Phys. Wave Phenom. 19(1), 30 (2011) [DOI: 10.3103/S1541308X11010079].ADSCrossRefGoogle Scholar
  22. 22.
  23. 23.
    A. Plech, V. Kotaidis, M. Lorenc, and J. Boneberg, “Femtosecond Laser Near-Field Ablation from Gold Nanoparticles,” Nature Phys. 2(1), 44 (2005).ADSCrossRefGoogle Scholar
  24. 24.
    B. Gault, F. Vurpillot, A. Bostel, A. Menand, and B. Deconihout, “Estimation of the Tip Field Enhancement on a Field Emitter under Laser Illumination,” Appl. Phys. Lett. 86(9), 094101 (2005).ADSCrossRefGoogle Scholar
  25. 25.
    S. Lal, S. Link, and N. J. Halas, “Nano-Optics from Sensing to Waveguiding,” Nature Photon. 1(11), 641 (2007).ADSCrossRefGoogle Scholar
  26. 26.
    N. E. Andreev, S.V. Kuznetsov, A.A. Pogosova, L. C. Steinhauer, and W. D. Kimura, “Modeling of Laser Wakefield Acceleration at CO2 Laser Wavelengths,” Phys. Rev. ST Accel. Beams. 6(4), 041301 (2003).ADSCrossRefGoogle Scholar
  27. 27.
    J. S. Liu, C. Q. Xia, W. T. Wang, H. Y. Lu, Ch. Wang, A.H. Deng, W. T. Li, H. Zhang, X.Y. Liang, Y.X. Leng, X. M. Lu, C. Wang, J. Z. Wang, K. Nakajima, R. X. Li, and Z.Z. Xu, “All-Optical Cascaded Laser Wake-field Accelerator Using Ionization-Induced Injection,” Phys. Rev. Lett. 107(3), 035001 (2011).ADSCrossRefGoogle Scholar
  28. 28.
    B.B. Pollock, C. E. Clayton, J. E. Ralph, F. Albert, A. Davidson, L. Divol, C. Filip, S.H. Glenzer, K. Herpoldt, W. Lu, K.A. Marsh, J. Meinecke, W. B. Mori, A. Pak, T. C. Rensink, J.S. Ross, J. Shaw, G. R. Tynan, C. Joshi, and D.H. Froula, “Demonstration of a Narrow Energy Spread, ∼0.5GeV Electron Beam from a Two-Stage Laser Wakefield Accelerator,” Phys. Rev. Lett. 107(4), 045001 (2011).ADSCrossRefGoogle Scholar
  29. 29.
    A. Siems, S.A. L. Weber, J. Boneberg, and A. Plech, “Thermodynamics of Nanosecond Nanobubble Formation at Laser-Excited Metal Nanoparticles,” New J. Phys. 13, 043018 (2011).ADSCrossRefGoogle Scholar
  30. 30.
    Exploding Wires, Ed. by W. G. Chace and H. K. Moore (Plenum Press, N.Y., 1962).Google Scholar
  31. 31.
    Yu. L. Bakshaev, P. I. Blinov, V.V. Vikhrev, E.M. Gordeev, S.A. Dan’ko, V. D. Korolev, S. F. Medovshchikov, S. L. Nedoseev, E.A. Smirnova, V. I. Tumanov, A. S. Chernenko, and A. Yu. Shashkov, “Study of the Plasma in a Preformed Z-Pinch Constriction,” Plasma Phys. Rep. 27(12), 1039 (2001).ADSCrossRefGoogle Scholar
  32. 32.
    L. I. Urutskoev and D.V. Filippov, “β-Stability Condition for the Nuclei of Neutral Atoms,” Phys.-Usp. 47(12), 1257 (2004).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2013

Authors and Affiliations

  1. 1.Wave Research Center, Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia

Personalised recommendations