Physics of Wave Phenomena

, Volume 19, Issue 1, pp 39–42 | Cite as

Interaction of few-cycle optical pulses in nonmetallic carbon nanotubes

  • M. B. Belonenko
  • N. G. Lebedev
  • E. N. Nelidina
Waves In Nanostructures

Abstract

Collision of two few-cycle optical pulses propagating in the medium of nonmetallic carbon nanotubes is described using joint solution of the Maxwell equations for the electromagnetic field and the Boltzmann equation for the electron subsystem.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. S. Dresselhaus, G. Dresselhaus, and P.C. Eklund, Science of Fullerenes and Carbon Nanotubes (Academic Press, San Diego, 1996).Google Scholar
  2. 2.
    A. L. Ivanovskii, Quantum Chemistry in Materials Technology. Nanotubular Forms of Substance (Izd-vo UrORAN, Ekaterinburg, 1999) [in Russian].Google Scholar
  3. 3.
    Yu.E. Lozovik and A.M. Popov, “Formation and Growth of Carbon Nanostructures: Fullerenes, Nanoparticles, Nanotubes and Cones,” Phys.-Usp. 40(7), 717 (1997).ADSCrossRefGoogle Scholar
  4. 4.
    A.V. Eletskii, “Endohedral Structures,” Phys.-Usp. 43(2), 111 (1997).ADSCrossRefGoogle Scholar
  5. 5.
    S. A. Maksimenko and G. Ya. Slepyan, “Nanoelectromagnetics of Low-Dimentional Structure,” in Handbook of Nanotechnology. Nanometer Structure: Theory, Modeling, and Simulation (SPIE Press, Bellingham, 2004), p. 145.CrossRefGoogle Scholar
  6. 6.
    G. Ya. Slepyan, S.A. Maksimenko, V.P. Kalosha, J. Herrmann, E. E. B. Campbell, and I.V. Hertel, “Highly Efficient High-Order Harmonic Generation by Metallic Carbon Nanotubes,” Phys. Rev. A. 60(2), R777 (1999).ADSCrossRefGoogle Scholar
  7. 7.
    M. B. Belonenko, E.V. Demushkina, and N. G. Lebedev, “Electromagnetic Soliton in a System of Carbon Nanotubes,” J. Russ. Laser Res. 27(5), 457 (2006).CrossRefGoogle Scholar
  8. 8.
    M. B. Belonenko, E.V. Demushkina, and N. G. Lebedev, “Electromagnetic Solitons in Bundles of Zigzag Carbon Nanotubes,” Phys. Solid State. 50(2), 383 (2008).ADSCrossRefGoogle Scholar
  9. 9.
    M. F. Lin and K.W.-K. Shung, “Plasmons and Optical Properties of Carbon Nanotubes,” Phys. Rev. B. 50(23), 17744 (1994).ADSCrossRefGoogle Scholar
  10. 10.
    R. Saito, M. Fujita, G. Dresselhaus, and M.S. Dresselhaus, “Electronic Structure of Graphene Tubules Based on C60,” Phys. Rev. B. 46(3), 1804 (1992).ADSCrossRefGoogle Scholar
  11. 11.
    P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71(9), 622 (1947).ADSMATHCrossRefGoogle Scholar
  12. 12.
    E. M. Epshtein, “Solitons in Superlattice,” Sov. Phys.-Solid State. 19, 2020 (1977).Google Scholar
  13. 13.
    R. K. Bullough and P. J. Caudrey, Solitons (Springer, Berlin, N.Y., 1980).MATHCrossRefGoogle Scholar
  14. 14.
    N. S. Bakhvalov, NumericalMethods (Analysis, Algebra, Ordinary Differential Equations) (Nauka, Moscow, 1975) [in Russian].Google Scholar
  15. 15.
    P.W. Kitchenside, P. J. Caudrey, and R.K. Bullough, “Soliton Like Spin Waves in 3HeB,” Phys. Scr. 20, 673 (1979).ADSCrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2011

Authors and Affiliations

  • M. B. Belonenko
    • 1
  • N. G. Lebedev
    • 2
  • E. N. Nelidina
    • 3
  1. 1.Laboratory of NanotechnologiesVolgograd Business InstituteVolgogradRussia
  2. 2.Volgograd State UniversityVolgogradRussia
  3. 3.Volgograd State Medical UniversityVolgogradRussia

Personalised recommendations