Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 487–494 | Cite as

Performance Analysis of the EM Algorithm in Conjunction with Algorithms for Determining an Optimal Number of Clusters and Their Centroids, Which Allows Estimating Parameters of Non-Gaussian Interference in Mobile Communication Systems

  • R. R. Faizullin
  • S. T. YaushevEmail author
  • A. Yu. Insarov
  • R. F. Zaripov
  • M. M. Fatykhov
Radio Engeneering and Communication
  • 5 Downloads

Abstract

In this article, the “elbow method” and the “average silhouette” algorithms are used for determining an optimal number of clusters. A “shifted” EM algorithm adapted to the number of clusters is put forward, which allows increasing accuracy of the Gaussian mixture distribution approximation that determines the probabilistic structure of the interference distribution. Dependencies of an average number of cycles and the Kullback–Leibler divergence on a number of clusters in an initial mixture are obtained via mathematical modeling with a preset range of parameters. A comparative analysis of the EM algorithm results is carried out.

Keywords

cluster analysis EM algorithm algorithms of determining an optimal number of clusters non-Gaussian interference 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Chabdarov, Sh.M. and Trofimov, A.T., Poly-Gaussian Representation of Arbitrary Noise and the Discrete Signal Detection, Radiotekhnika i Elektronika, 1975, vol. 20, no. 4, pp. 734–735.MathSciNetGoogle Scholar
  2. 2.
    Kozlov, S.V., Novye smesevye podkhody k proektirovaniyu radiointerfeisa sistem svyazi (New Mixing Approaches to Design of the Communication System Interface), Kazan: Novoe Znanie, 2014.Google Scholar
  3. 3.
    Faizullin, R.R., Kadushkin, V.V., and Zaripov, R.F., A Poly-Gaussian Algorithm for Joint Demodulation in Mobile Communications, Nelineinyi Mir, 2015, vol. 13, no. 8, pp. 4–9.Google Scholar
  4. 4.
    Faizullin, R.R., Kadushkin, V.V., and Vorob’ev, M.S., Synthesis of Poly-Gaussian Quasioptimal Algorithms for Multiuser Detection Problem and Non-Gaussian Interference, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 93–98 [Russian Aeronautics (Eng. Transl.), vol. 58, no. 3, pp. 345–350].Google Scholar
  5. 5.
    Kadushkin, V.V., Algorithm of the Optimal Detection in Non-Gaussian Channels of CDMA Systems Considering the Intra-System Interference, Zhurnal Radioelektroniki, 2016, no. 11, URL: https://doi.org/jre.cplire.ru/jre/nov16/11/text.pdf
  6. 6.
    Chabdarov, Sh.M., Nadeev, A.F., and Faizullin, R.R., Post-Correlation Probabilistic Models in the Problem of Signal Discrimination for Modern Information and Communication Systems, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 2, pp. 49–53 [Russian Aeronautics (Eng. Transl.), vol. 57, no. 2, pp. 175–180].Google Scholar
  7. 7.
    Nadeev, A.F. and Podkurkov, I.A., Adaptive Estimation of Parameters of Distribution of Non-Gaussian Interferences Through the Application of the EM Algorithm and Its Modifications, Nelineinyi Mir, 2015, vol. 13, no. 8, pp. 64–72.Google Scholar
  8. 8.
    Chabdarov, Sh.M., Nadeev, A.F., Faizullin, R.R., Efimov, E.N., and Adnan, A., Polycorrelation Distributed Adaptive Signal Processing in a Presence of Non-Gaussian Interferences, Nelineinyi Mir, 2009, vol. 7, no. 5, pp. 355–359.Google Scholar
  9. 9.
    Insarov, A.Y., Faizullin, R.R., Yaushev, S.T., and Lerner, I.M., Simulation of Effectiveness of the Channel Resources Evaluation Algorithm Founded on the Basic Model of Multiservice Network, Proc. Conf. Systems of Signals Generating and Processing in the Field of on Board Communications, Moscow, 2018, URL: https://doi.org/ieeexplore.ieee.org/document/8350597. Google Scholar
  10. 10.
    Bishop, C.M., Pattern Recognition and Machine Learning, N.Y: Springer Science–Business Media, 2006.zbMATHGoogle Scholar
  11. 11.
    McLachlan, G.J. and Krishnan, T., The EM Algorithm and Extensions, USA: John Wiley&Sons, 2008.CrossRefzbMATHGoogle Scholar
  12. 12.
    Korolev, V.Yu., EM-algoritm, ego modifikatsii i ikh primenenie k zadache razdeleniya smesey veroyatnostnykh raspredeleniy. Teoreticheskiy obzor (EM Algorithm, Its Modifications and Application to the Task of Separation of Mixtures of Probabilistic Distributions, Theoretical Review), Moscow: IPI RAN, 2007.Google Scholar
  13. 13.
    Celeux, G., Chauveau, D., and Diebolt, J., Stochastic Versions of the EM Algorithm: an Experimental Study in the Mixture Case, Journal of Statistical Computation and Simulation, 1996, vol. 55, no. 4, pp. 287–314.CrossRefzbMATHGoogle Scholar
  14. 14.
    Kodinariya, T.M. and Makwana, P.R., Review on Determining Number of Cluster in K-Means Clustering, Int. Journal of Advance Research in Computer Science and Management Studies, 2013, vol. 1, no. 6, pp. 90–95.Google Scholar
  15. 15.
    Vorontsov, K.V., Matematicheskie metody obucheniya po pretsedentam (teoriya obucheniya mashin) (Mathematical Learning Methods by Precedents (Machine Learning Theory)), URL: https://doi.org/www.machinelearning.ru/wiki/images/6/6d/Voron-ML-1.pdf.

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • R. R. Faizullin
    • 1
  • S. T. Yaushev
    • 1
    Email author
  • A. Yu. Insarov
    • 1
  • R. F. Zaripov
    • 1
  • M. M. Fatykhov
    • 1
  1. 1.Tupolev Kazan National Research Technical UniversityKazanRussia

Personalised recommendations