Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 474–480 | Cite as

Dynamic One-Sided Thermal Scanning of Aircraft Composite Fairings

  • A. V. RyazhskikhEmail author
  • N. P. Zaets
  • I. A. Chizhov
  • O. A. Seminikhin
Aircraft Production Technology
  • 4 Downloads

Abstract

A theoretical and experimental analysis of the dynamic one-sided thermal scanning of aircraft composite fairings during short-time convective heating is carried out. The model of thermal contrast based on the concept of the mechanism of molecular heat conductivity with rationalization of reducing statement from 2D to 1D format is given and an “effective” heat transfer coefficient from the heated convective source to the fairing surface is introduced. The calculation results show the qualitative sufficiency of this approach, and the full-scale experiments for the nose fairing of the MIG-29 aircraft confirm its correctness quantitatively. The conclusions are drawn on the feasibility of the thermal scanning method of aircraft fairings for identifying delamination cavities.

Keywords

thermal scanning fairing heating cooling delamination cavity heat transfer coefficient 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Romashin, A.G., Gaydachuk, V.E., Karpov, Ya.S., and Rusin, M.Yu., Radioprozrachnye obtekateli letatel’nykh apparatov (Radiotransparent Aircraft Fairings), Kharkiv: KhAI, 2003.Google Scholar
  2. 2.
    Gurtovnik, I.G., Sokolov, V.I., Trofimov, N.N., and Shalgunov, S.G., Radioprozrachnye izdeliya iz stekloplastikov (Radiotransparent Products Made of Fiberglass), Moscow: Mir, 2003.Google Scholar
  3. 3.
    Kurennov, S.S., Koshevoi, A.G., and Polyakov, A.G., Through-Thickness Stress Distribution in the Adhesive Joint for the Multilayer Composite Material, Izv. Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 10–15 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 2, pp. 145–151].Google Scholar
  4. 4.
    Yakovlev, O.I., Yakubov, V.P., Uryadov, V.P., and Pavel’ev, A.G., Rasprostranenie radiovoln (Propagation of Radio Waves), Moscow: Lenand, 2009.Google Scholar
  5. 5.
    Lange, Yu.V., Akusticheskie nizkochastotnye metody i sredstva nerazrushayushchego kontrolya mnogosloinykh konstruktsii (Acoustic Low-Frequency Methods and Instruments of Nondestructive Testing of Multilayer Structures), Moscow, Mashinostroenie, 1991.Google Scholar
  6. 6.
    Alifanov, O.M., Nenarokomov, A.V., Nenarokomov, K.A., Titov, D.M., and Finchenko, V.S., Non-Destructive Flaw Detection of Materials of Elastic Thermal Protection by Methods of Nonlinear Acoustics, Teplovye Protsessy v Tekhnike, 2016, no. 8, pp. 368–377.Google Scholar
  7. 7.
    Nesteruk, D.A. and Vavilov, V.P., Teplovoi kontrol’ i diagnostika (Thermal Control and Diagnostics), Tomsk: TPU, 2007.Google Scholar
  8. 8.
    Bird, R.B., Stewart, E.W., and Lightfoot, E.N., Transport Phenomena, New York, John Wiley & Sons, 2007.Google Scholar
  9. 9.
    Doetsch, G., Anleitung Zum Praktischen Gebrauch der Laplace-Transformation und der Z-Transformation, München, Wien: Oldenbourg, 1967.zbMATHGoogle Scholar
  10. 10.
    Kays, W.M., Convective Heat and Mass Transfer, New York: McGraw-Hill, 1966.Google Scholar
  11. 11.
    Tsoi, P.V., Metody rascheta otdel’nykh zadach teplomassoperenosa (Methods for Calculating Particular Tasks of the Heat and Mass Transfer), Moscow: Energiya, 1971.Google Scholar
  12. 12.
    Martynenko, O.G. and Sokovishin, Yu.A., Svobodno-konvektivnyi teploobmen. Spravochnik (Free-Convective Heat Exchange. Reference Book), Soloukhin, R.I., Ed., Minsk: Nauka i Tekhnika, 1982.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Ryazhskikh
    • 1
    Email author
  • N. P. Zaets
    • 2
  • I. A. Chizhov
    • 2
  • O. A. Seminikhin
    • 1
  1. 1.Voronezh State Technical UniversityVoronezhRussia
  2. 2.Military Educational and Scientific Center of the Air Force “Air Force Academy”VoronezhRussia

Personalised recommendations