Russian Aeronautics

, Volume 61, Issue 3, pp 445–451 | Cite as

Advanced Pulsed Plasma Thrusters and Their Application as a Part of Small Spacecraft Propulsion Systems

  • A. V. Bogatyi
  • R. V. El’nikov
  • I. P. Nazarenko
  • G. A. Popov
  • S. A. Semenikhin
Aircraft and Rocket Engine Theory


The paper presents the research results of the effect of a capacitor energy storage device configuration on the specific characteristics of advanced modern propulsion systems based on the ablative pulsed plasma thrusters (APPT). These thrusters are designed to perform specific tasks within the small spacecrafts with the onboard power capacity up to 200 W.


propulsion system ablative pulsed plasma thruster small spacecraft motion control total thrust pulse orbit keeping 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dron’, N.M., Kondrat’ev, A.I., Khit’ko, A.V., and Khorol’skii, P.G., The Concept of Using the Electric Propulsion Thrusters On Board Micro Satellites, Aviatsionno-Kosmicheskaya Tehnika i Tehnologiya, 2008, no. 9, pp. 39–43.Google Scholar
  2. 2.
    Antropov, N.N., Bogatyi, A.V., Dyakonov, G.A., Orlov, M.M., Popov, G.A., Tyutin, V.K., and Yakovlev, V.N., Development of Ablative Pulsed Plasma Thrusters at the Research Institute of Applied Mechanics and Electrodynamics, Kosmonavtika i Raketostroenie, 2008, no. 3(52), pp. 28–34.Google Scholar
  3. 3.
    Antropov, N.N., Bogatyi, A.V., Dyakonov, G.A., Lyubinskaya, N.V., Popov, G.A., Semenikhin, S.A., Tyutin, V.K., Khrustalev, M.M., and Yakovlev, V.N., A New Stage in Development of Ablative Pulsed Plasma Thrusters at the RIAME, Solar Systems Research, 2012, vol. 46, no. 7, pp. 531–541.CrossRefGoogle Scholar
  4. 4.
    Rudikov, A., Antropov, N., and Popov, G., Pulsed Plasma Thruster of the Erosion Type for a Geostationary Artificial Earth Satellite, Acta Astronautica, 1995, vol. 35, nos. 9–11, pp. 585–590.CrossRefGoogle Scholar
  5. 5.
    Bogatyi, A.V., Dyakonov, G.A., Nechaev, I.L., Popov, G.A., Maryashin, A.Yu., and Khalapyan, K.G., Perspectives for Improving Mass Parameters and Overall Dimensions of Ablative Pulsed Plasma Thrusters, Voprosy Electromekhaniki. Trudy VNIIEM, 2013, vol. 133, no. 2, pp. 19–26.Google Scholar
  6. 6.
    Khramov, A.A. and Ishkov, S.A., Optimization of Project-Ballistic Parameters for Low Earth Orbit Spacecraft with Propulsion Systems with Energy Storage, Izv. Vuz. Av. Tekhnika, 2016, vol. 59, no. 3, pp. 52–57 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 3, pp. 351–357].Google Scholar
  7. 7.
    Moe, K. and Moe, M.M., Gas–Surface Interactions and Satellite Drag Coefficients, Planetary and Space Science, 2005, vol. 53, no. 8, pp. 793–801.CrossRefGoogle Scholar
  8. 8.
    Bowman, B.R. and Moe, K., Drag Coefficient Variability at 175–500 km from the Orbit Decay Analyses of Spheres, URL:
  9. 9.
    Mehta, P.M., Walker, A., Lawrence, E., Linares, R., Higdon, D., and Koller, J., Modeling Satellite Drag Coefficients with Response Surfaces, Advances in Space Research, 2014, vol. 54, no. 8, pp. 1590–1607.CrossRefGoogle Scholar
  10. 10.
    Bowman, B.R., Marcos, F.A., Moe, K., and Moe, M.M., Determination of Drag Coefficient Values for CHAMP and GRACE Satellites using Orbit Drag Analysis, in Astrodynamics 2007, Advances in the Astronautical Sciences, vol. 129, pp. 147–166, AAS 07–259, 2008.Google Scholar
  11. 11.
    Sutton, E.K., Effects of Solar Disturbances on the Thermosphere Densities and Winds from CHAMP and GRACE Satellite Accelerometer Data, Doctoral dissertation, USA: University of Colorado, 2008.Google Scholar
  12. 12.
    CIRA-72, COSPAR International Reference Atmosphere, Berlin: Akademie Verlag, 1972.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. V. Bogatyi
    • 1
  • R. V. El’nikov
    • 1
  • I. P. Nazarenko
    • 1
  • G. A. Popov
    • 1
  • S. A. Semenikhin
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations