Advertisement

Russian Aeronautics

, Volume 61, Issue 3, pp 396–403 | Cite as

Computational Research of the Main Rotor Hover and Vertical Descent States Based on the Nonlinear Blade Vortex Model

  • Yu. M. Ignatkin
  • P. V. MakeevEmail author
  • V. I. Shaidakov
  • A. I. Shomov
Aero- and Gas-Dynamics of Flight Vehicles and Their Engines
  • 4 Downloads

Abstract

The research is conducted of aerodynamic performance of the Mi-8 helicopter main rotor in the hover state and the vertical descent state, including vortex ring states (VRSs). Total and distributed aerodynamic performance, wake patterns, and main rotor flow patterns are calculated. The findings and results were compared with those provided by other researchers.

Keywords

main rotor nonlinear vortex model hover vertical descent vortex ring state aerodynamic performance 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akimov, A.I., Aerodinamika i letnye kharakteristiki vertoletov (Aerodynamics and Performance of Helicopters), Moscow: Mashinostroenie, 1988.Google Scholar
  2. 2.
    Tyabrisova, N.U. and Ivchin, V.A., Computational Modeling of Induced Velocities at Positive-Value Rotor Angles of Attack, and Calculations of Ring Vortex Boundaries, Trudy MVZ im. M.L. Milya, Moscow, 1997, pp. 97–106.Google Scholar
  3. 3.
    Azuma, A., Koo, J., Oka, T., and Washizu, K., Experiments on a Model Helicopter Rotor Operating in the Vortex Ring State, Journal of Aircraft, 1966, vol. 3, no. 3, pp. 225–230.CrossRefGoogle Scholar
  4. 4.
    Castles, W. Jr. and Gray, R.B., Empirical Relation between Induced Velocity, Trust, and Rate of Descent of a Helicopter Rotor as Determined by Wind-Tunnel Tests on Four Model Rotors, NACA TN-2474, 1951. URL: https://doi.org/ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19930083181.pdf. Google Scholar
  5. 5.
    Volodko, A.M., Osnovy aerodinamiki i dinamiki poleta vertoletov (Fundamentals of Helicopter Aerodynamics and Flight), Moscow: Transport, 1988.Google Scholar
  6. 6.
    Voprosy aerodinamiki nesushchikh vintov vertoletov (Problems of Aerodynamics of the Helicopter Rotors), I.P. Bratukhin, Ed., Moscow: Oborongiz, 1961.Google Scholar
  7. 7.
    Shaidakov, V.I., Theoretical Research into Helicopter Rotor Operation in Vertical Descent States, Izv. Vuz. Av. Tekhnika, 1960, vol. 3, no. 1, pp. 43–51.Google Scholar
  8. 8.
    Vozhdaev, E.S., Rotor Theory for the Vortex Ring States, Trudy TSAGI, 1970, no. 1184, pp. 3–20.Google Scholar
  9. 9.
    Shaidakov, V.I. and Brusov, V.S., Influence of the Air Viscosity on the Induced Power of a Helicopter Main Rotor in Hover and Vertical Takeoff Modes, Izv. Vuz. Av. Tekhnika, 2017, vol. 60, no. 4, pp. 82–89 [Russian Aeronautics (Engl. Transl.), vol. 60, no. 4, pp. 567–574].Google Scholar
  10. 10.
    Belotserkovskii, S.M., Loktev, B.E., and Nisht, M.I., Issledovanie na EVM aerodinamicheskikh i aerouprugikh kharakteristik vintov vertoleta (Computer-Assisted Research of the Aerodynamic and Elastic Properties of Helicopter Rotors), Moscow, Mashinostroenie, 1992.Google Scholar
  11. 11.
    Shcheglova, V.M., Non-Stationary Rotor Flow in the Steep Descent State and the VRS, Uchenye Zapiski TsAGI, 2012, vol. 43, no. 3, pp. 51–58.Google Scholar
  12. 12.
    Leishman, J.G., Bhagwat, M.J., and Ananthan, S., Free-Vortex Wake Predictions of the Vortex Ring State for Single Rotor and Multi-Rotor Configurations, Proc. 58th American Helicopter Society International Annual Forum, Montreal, Canada, 2002, vol. 2, pp. 956–985.Google Scholar
  13. 13.
    Celi, R. and Ribera, M., Time Marching Simulation Modeling in Axial Descending through the Vortex Ring State, Proc. 63rd American Helicopter Society International Annual Forum, Virginia Beach, USA, 2007, vol.1.Google Scholar
  14. 14.
    Newman S.J., Brown, R., Perry, J., Lewis, S., Orchard, M., and Modha, A., Comparative Numerical and Experimental Investigations of the Vortex Ring Phenomenon in Rotorcraft, Proc. 57th American Helicopter Society International Annual Forum, Washington, USA, 2001, vol. 1, pp. 242–262.Google Scholar
  15. 15.
    Garipova, L.I., Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., and Barakos, G.N., Estimates of Hover Aerodynamics Performance of Rotor Model, Izv. Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 7–13 [Russian Aeronautics (Engl. Transl.), 2014, vol. 57, no. 3, pp. 223–231].Google Scholar
  16. 16.
    Ignatkin, Yu.M., Makeev, P.V., Shomov, A.I., and Konstantinov, S.G., Computational Modeling of Vortex Ring State Modes of Helicopter Main Rotor on the Basis of Free Wake Vortical Model, Trudy MAI, 2012, no. 59, URL: https://doi.org/trudymai.ru/upload/iblock/ae4/modelirovaniya-rezhima-_vikhrevogo-koltsa_-nesushchegovinta-vertoleta-na-baze-nelineynoy-vikhrevoy-modeli-i-metodov-cfd.pdf?lang=ru&issue=59
  17. 17.
    Ignatkin, Yu.M., Makeev, P.V., Grevtsov, B.S., Shomov, A.I., A Nonlinear Blade Vortex Propeller Theory and Its Applications to Estimate Aerodynamic Characteristics for Helicopter Main Rotor and Anti-Torque Rotor. Vestnik MAI, 2009, vol. 16, no. 5, pp. 24–31.Google Scholar
  18. 18.
    Zozulya, V.B. and Ivanov, Y.P., Prakticheskaya aerodinamika vertoleta Mi-8 (Practical Aerodynamics of Mi-8 Helicopter), Moscow: Mashinostroenie, 1977.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Yu. M. Ignatkin
    • 1
  • P. V. Makeev
    • 1
    Email author
  • V. I. Shaidakov
    • 1
  • A. I. Shomov
    • 1
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia

Personalised recommendations