Advertisement

Russian Aeronautics

, Volume 61, Issue 2, pp 220–229 | Cite as

An Anthropocentric Approach for Solving the Problem of Optimal Automatic Landing Flare

  • V. T. TrinhEmail author
  • N. M. Nguyen
  • N. T. Dang
  • K. A. Nguyen
Flight Dynamics and Control of Flight Vehicles
  • 10 Downloads

Abstract

In this paper, the algorithm of automatic landing flare is designed based on the maximum coordination between the trajectories, which are convenient for the pilot to operate in manual mode and the one attained by the auto-landing system according to the algorithm of optimal flight control.

Keywords

passenger aircraft landing aircraft landing flare optimal automatic control anthropocentric approach adaptive algorithm permissible zone of flare altitude mathematical pilot’s model pilot training flight safety 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Oppelt, W. and Vossius, G., Der Mensch als Regler, Berlin: VEB Verlag Technik, 1970.Google Scholar
  2. 2.
    Zaporozhets, A.V. and Kostyukov, V.M., Proektirovanie sistem otobrazheniya informatsii (Design of Information Display Systems), Moscow: Mashinostoenie, 1992.Google Scholar
  3. 3.
    Efremov, A.V., Koshelenko, A.V., and Tyaglik, M.S., Improvement of Semi-Scale Simulation Technique and Subsystems for Investigation of Aircraft Manual Control, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 31–37 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 394–400].Google Scholar
  4. 4.
    Efremov, A.V., Koshelenko, A.V., Tyaglik, M.S., Tyumentsev, Yu.V., and Wenqian, Tan, Mathematical Modeling of Pilot Control Response Characteristics in Studying the Manual Control Tasks, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 2, pp. 34–40 [Russian Aeronautics (Engl.Transl.), vol. 58, no. 2, pp. 173–179].Google Scholar
  5. 5.
    Kostyukov, V.M., Trinh, V.T., and Nguyen, N.M., Airliner Automatic Landing Optimal Trajectory Shaping Based on Anthropocentric Principle, Vestnik MAI, 2016, vol. 23, no. 1, pp. 123–135.Google Scholar
  6. 6.
    Kostyukov, V.M., Trinh, V.T., and Nguyen, N.M., Realization of Passenger Plane Auto-Land Desired Trajectory Shaping Algorithm Based on Anthropocentric Principle, Vestnik MAI, 2016, vol. 23, no. 3, pp. 84–95.Google Scholar
  7. 7.
    Merriam, C.W., Optimization Theory and the Design of Feedback Control Systems, New York: McGraw-Hill Electronic Series, 1967.zbMATHGoogle Scholar
  8. 8.
    Averkiev, N.F., Vlasov, S.A., Salov, V.V., and Kiselev, V.V., Route Optimization of the Aircraft Flight, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 33–37 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 474–479].Google Scholar
  9. 9.
    Bakulin, V.N., Borzykh, S.V., and Voronin, V.V., Space Vehicle Landing Dynamics at Failure of Landing Gear, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 1, pp. 22–26 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 1, pp. 23–28].Google Scholar
  10. 10.
    Garkushenko, V.I. and Lazareva, P.A., To a Problem of Aircraft Control System Design with Given Dynamic Parameters, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 4, pp. 21–25 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 4, pp. 383–387].Google Scholar
  11. 11.
    Afanas’ev, V.A., Degtyarev, G.L., Meshchanov, A.S., and Sirazetdinov, R.T., Landing of Flight Vehicles without the Landing Gear, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 4, pp. 11–13 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 4, pp. 339–343].Google Scholar
  12. 12.
    Denisov, K.G. and Rodnishchev, N.E., Extreme Deviations of Landing Parameters for Heavy Aircraft, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 1, pp. 43–46 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 1, pp. 55–60].Google Scholar
  13. 13.
    Bryson, A.E. and Ho, Yu-Shi., Applied Optimal Control: Optimization, Estimation and Control, New York: Taylor & Francis Group, 1975.Google Scholar
  14. 14.
    Speedy, C.B., Brown, B.F., and Goodwin, G.C., Control Theory: Identification and Optimal Control, Edinburgh: Oliver and Boyd, 1970.zbMATHGoogle Scholar
  15. 15.
    Garkushenko, V.I. and Vinogradov, S.S., Improvement of Handling Qualities for the Aircraft Longitudinal Motion, Izv.Vuz. Av. Tekhnika, 2016, vol. 59, no. 4, pp. 46–51 [Russian Aeronautics (Engl. Transl.), vol. 59, no. 4, pp. 489–494].Google Scholar
  16. 16.
    Petunin, V.I. and Neugodnikova, L.M., Method for Constructing Automatic Control Systems with Restriction on Aircraft Critical Parameters, Izv.Vuz. Av. Tekhnika, 2015, vol. 58, no. 3, pp. 28–34 [Russian Aeronautics (Engl. Transl.), vol. 58, no. 3, pp. 279–285].Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • V. T. Trinh
    • 1
    • 2
    Email author
  • N. M. Nguyen
    • 1
  • N. T. Dang
    • 2
  • K. A. Nguyen
    • 2
  1. 1.Moscow Aviation Institute (National Research University)MoscowRussia
  2. 2.Le Quy Don Technical UniversityHanoiVietnam

Personalised recommendations