Advertisement

Russian Aeronautics

, Volume 61, Issue 1, pp 109–116 | Cite as

Cognitive Graphical Additions to the Interfaces of Command Measurement Systems for Aerospace Application

  • Yu. G. Emel’yanova
  • V. M. Khachumov
Radio Engineering and Communication
  • 14 Downloads

Abstract

The methods of cognitive graphical information presentation are considered to support decision-making in earth stations of command measurement systems. The work is performed on transforming telemetric data, readings of the sensors of space module and earth station into visual images.

Keywords

cognitive graphics visualization telemetry space module 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Tsvetkov, V.Ya., The Cognitive Modeling with the Use of Spatial Information, European Journal of Technology and Design, 2015, vol. 10, no 4, pp. 149–158.Google Scholar
  2. 2.
    Tsvetkov, V.Ya., The Cognitive Education Models, Upravlenie Obrazovaniem, Teoriya i Praktika, 2014, no. 1, pp. 32–42.Google Scholar
  3. 3.
    Boichenko, G.N., Graphic Organizers as Learning Tools: Didactic Functions and Application Prospects, URL: https://doi.org/ito.su/main.php?pid=26&fid=9278.
  4. 4.
    Yakovlev, V.B., Avtomatizirovannoe upravlenie tekhnologicheskimi protsessami (Automated Control of Technological Processes), Leningrad: Izd. LGU, 1988.Google Scholar
  5. 5.
    Chernov, V.Yu., Flight Control of Angular Rate Sensors with Forced Rotation, Izv. Vuz. Av. Tekhnika, 2006, vol. 49, no.1, 2006, pp. 43–47 [Russian Aeronautics (Engl. Transl.), vol. 49, no. 1, pp. 62–69].Google Scholar
  6. 6.
    Chernov, V.Yu., Flight Control of Sensors in the Control System with Functional Testing, Izv. Vuz. Av. Tekhnika, 2005, vol. 48, no. 2, pp. 52–55 [Russian Aeronautics (Engl. Transl.), vol. 48, no. 2, pp. 78–84].Google Scholar
  7. 7.
    Emelyanova, Yu.G., Development of Cognitive Representation Methods for Real Time Dynamic Systems, Iskusstvennyi Intellekt i Prinyatie Reshenii, 2016, no. 3, pp. 21–30.Google Scholar
  8. 8.
    Grishin, V.G., Obraznyi analiz eksperimental’nykh dannykh (The Figurative Analysis of Experimental Data), Moscow: Nauka, 1982.Google Scholar
  9. 9.
    Emelyanova, Yu.G. and Talalaev, A.A., The Network Models of Applied Parallel Systems Functioning for Data Flow Processing, Aviakosmicheskoe Priborostroenie, 2012, no. 5, pp. 10–19.Google Scholar
  10. 10.
    Emelyanova, Yu.G., Malyshevskii, A.A., and Khachumov, V.M., Visualization of Training Processes of the Artificial Neural Network, Matematicheskie metody raspoznavaniya obrazov. Materialy 13 Vserossiiskoi konferentsii (Proc. 13th All-Russian Conference on Mathematical Methods for Pattern Recognition), Moscow: MAKS Press, 2007, pp. 586–588.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Ailamazyan Program Systems InstituteRussian Academy of SciencesPereslavskii raionRussia
  2. 2.Institute for Systems AnalysisRussian Academy of SciencesMoscowRussia

Personalised recommendations