Russian Aeronautics (Iz VUZ)

, Volume 59, Issue 2, pp 175–182 | Cite as

Control synthesis for an unmanned helicopter with time-delay under uncertain external disturbances

  • V. I. Garkushenko
  • S. S. Vinogradov
  • G. N. Barakos
Flight Dynamics and Control of Flight Vehicles


This paper presents the controller synthesis for an unmanned helicopter with minimum initial information about the parameters of its mathematical model with time-delays of measured and control signals. The unknown parameters, wind disturbances, and system nonlinearity are considered as external disturbances that are estimated using a multi-gap observer. The estimates obtained are used in the control law to improve the stability rate for flight regimes.


unmanned helicopter control law time-delay external disturbance estimation disturbance compensation 


as, bs

Longitudinal and lateral flapping angle of main rotor, rad


Local acceleration of gravity, m/s2

H and dH / dt

Vehicle altitude, m and its rate of change, m/s


Vehicle roll, pitch and yaw rates, deg/s


Longitudinal, lateral and normal velocity components of vehicle C.G., m/s

\({W_i},j = \overline {1,3} \)

Wind actions in the body coordinate system, m/s

x, y, z

Vehicle position coordinates in local north-east-down frame, m

δcol, δped

Normalized collective pitch and rudder servo input [–1, 1]

δlon, δlat

Normalized elevator and aileron servo input [–1, 1]


Intermediate state in yaw rate feedback controller dynamics, rad

θ, ϕ, ψ

Vehicle pitch, roll and yaw angles, deg


Deviation from the trim values


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Hirata, K. and Minemura, H., Experimental Evaluations of Reference Governor Control Schemes with Applications to the Constrained Control of RC Helicopters, Proc. of the IEEE Int. Conf. on Control Applications, Taipei, Taiwan, 2004, vol. 2, pp. 855–859.Google Scholar
  2. 2.
    Gu, K. and Niculescu, S.I., Survey on Recent Results in the Stability and Control of Time-Delay Systems, Journal of Dynamic Systems, Measurement, and Control, 2003, vol. 125, no. 2, pp. 158–165.CrossRefGoogle Scholar
  3. 3.
    Garcia, P., Castillo, P., Lozano, R., and Albertos, P., Robustness with Respect to Delay Uncertainties of a Predictor-Observer Based Discrete-Time Controller, Proc. of the 45th IEEE Conference on Decision and Control, San Diego, 2006, pp. 199–204.CrossRefGoogle Scholar
  4. 4.
    Oh-hara, S., Urano, Y., and Matsuno, F., The Control of Constrained System with Time-Delay and its Experimental Evaluations Using RC Model Helicopter, Proc. of the Int. Conf. on Control, Automation and Systems, Seoul, 2007, pp. 2897–2901.Google Scholar
  5. 5.
    Du, J., Kondak, K., Bernard, M., Zhang, Y., Lüa, T., and Hommel, G., Model Predictive Control for a Small Scale Unmanned Helicopter, Int. Journal of Advanced Robotic Systems, 2008, vol. 5, pp. 433–438.Google Scholar
  6. 6.
    Lyasheva, S.A., Medvedev, M.V., and Shleimovich, M.P., Terrain Object Recognition in Unmanned Aerial Vehicle Control System, Izv.Vuz. Av. Tekhnika, 2014, vol. 57, no. 3, pp. 64–66 [Russian Aeronautics (Engl. Transl.), vol. 57, no. 3, pp. 303–306].Google Scholar
  7. 7.
    Kis, L. and Lantos, B., Time-Delay Extended State Estimation and Control of a Quadrotor Helicopter, Proc. of the 20th Mediterranean Conf. on Control and Automation, Bercelona, United Kingdom, 2012, pp. 1560–1565.Google Scholar
  8. 8.
    Shuo, Han, Straw, A.D., Dickinson, M.H., and Murray, R.M., A Real-Time Helicopter Testbed for Insect-Inspired Visual Flight Control, Proc. of the Int. Conference on Robotics and Automation, Kobe, 2009, pp. 3055–3060.Google Scholar
  9. 9.
    Cai, G., Chen, B.M., and Lee, T.H., Unmanned Rotocraft Systems. Advances in Industrial Control, London–Dordrecht–Heidelberg–N.Y: Springer-Verlag, 2011. 288 p.CrossRefGoogle Scholar
  10. 10.
    Kim, H.C., Dharmayanda, H.R., Kang, T., Budiyono, A., Lee, G., and Adiprawita, W., Parameter Identification and Design of a Robust Attitude Controller Using H Methodology for the Raptor E620 Small-Scale Helicopter, Int. Journal of Control, Automation, and Systems, 2012, vol. 10, no. 1, pp. 88–101.CrossRefGoogle Scholar
  11. 11.
    Garkushenko, V.I., Bezbryazov, M.V., and Barakos G.N., Robust Control Laws Synthesis for an Unmanned Helicopter, Vestnik KGTU im. A.N. Tupoleva, 2014, no. 1, pp. 96–103.Google Scholar
  12. 12.
    Garkushenko, V.I., Bezbryazov, M.V., and Barakos G.N., Synthesis of the Correcting Control Law to Improve the Helicopter Stabilization Quality, Izv.Vuz. Av. Tekhnika, 2012, vol. 55, no. 3, pp. 18–21 [Russian Aeronautics (Engl. Transl.), vol. 55, no. 3, pp. 245–250].Google Scholar
  13. 13.
    Garkushenko, V. I., Degtyarev, G. L., and Bezbryazov, State and External Disturbances Estimation of Discrete-Continuous Systems, Vestnik KGTU im. A.N. Tupoleva, 2012, no. 1, pp. 164–168.Google Scholar
  14. 14.
    Garkushenko, V.I., Discrete Control Synthesis by an Analog Prototype for Time-Varying Systems with Uncertain External Actions, Vestnik KGTU im. A.N. Tupoleva, 2000, no. 2, pp. 45–50.Google Scholar
  15. 15.
    Polyak, B. T., Khlebnikov, M. V., and Shcherbakov, P.S., Upravlenie lineinymi sistemami pri vneshnikh vozmushcheniyakh: tekhnika lineinykh matrichnykh neravenstv (Control of Linear Systems with External Disturbances: Technique of Linear Matrix Inequalities), Moscow: Lenand, 2014.Google Scholar
  16. 16.
    Aeronautical Design Standard Performance Specification Handling Qualities Requirements for Military Rotorcraft, URL: Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • V. I. Garkushenko
    • 1
  • S. S. Vinogradov
    • 1
  • G. N. Barakos
    • 2
  1. 1.Tupolev Kazan National Research Technical UniversityKazan, TatarstanRussia
  2. 2.The University of LiverpoolLiverpoolUK

Personalised recommendations