Russian Aeronautics (Iz VUZ)

, Volume 57, Issue 3, pp 223–231 | Cite as

Estimates of hover aerodynamics performance of rotor model

  • L. I. GaripovaEmail author
  • A. S. Batrakov
  • A. N. Kusyumov
  • S. A. Mikhailov
  • G. N. Barakos
Flight Vehicle Design


Hover computations were undertaken for a helicopter model rotor using Computational Fluid Dynamics (CFD). The influence of CFD mesh construction peculiarities and mesh parameters on the results was considered. Aerodynamics performance of the rotor were obtained including the rotor polar, loads per unit length, and vortical flow below the rotor disk was also visualized.


computational fluid mechanics hover mode main rotor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Yur’ev B.N., Aerodinamicheskii raschet vertoletov (Aerodynamic Analysis of Helicopters), Gos. Izd. Oboronnoi Promyshennosti, 1956. p. 559Google Scholar
  2. 2.
    Ignatkin, Yu.M. and Konstantinov, S.G., Researches of Aerodynamic Characteristics of the Helicopter Main Rotor Using CFD Methods, Trudy MAI, issue 57, 2012, URL: Scholar
  3. 3.
    Ignatkin, Yu.M., Makeev, P.V., Shomov, A.I., and Konstantinov, S.G., Computational Modeling of Vortex Ring State Modes of Helicopter Main Rotor Based on the Free Wake Vortical Model, Trudy MAI, issue 59, 2012, URL: Scholar
  4. 4.
    Nik Ahmad Ridhwan Nik Mohd and Barakos, G.N., Computational Aerodynamics of Hovering Helicopter Rotors, Jurnal Mekanikal, 2012, no. 34, pp. 16–46.Google Scholar
  5. 5.
    Steijl, R., Barakos, G., and Badcock, K., A Framework for CFD Analysis of Helicopter Rotors in Hover and Forward Flight, Int. Journal for Numerical Methods in Fluids, 2006, vol. 51, no. 8, pp. 819–847.CrossRefzbMATHGoogle Scholar
  6. 6.
    Batrakov, A.S., Nurmukhametov, R.R., Kusyumov, A.N., and Barakos, G.N., CFD Research of ANSAT Helicopter Tail Rotor Performances, Vestnik KGTU im. A.N. Tupoleva, 2012, no. 4, issue 2, pp. 14–17.Google Scholar
  7. 7.
    Batrakov, A.S., Kusyumov, A.N., Mikhailov, S.A., Pakhov, V.V., Sungatullin, A.R., Zherekhov, V.V., and Barakos, G.N., A Study in Helicopter Fuselage Drag, Proc. 39th European Rotorcraft Forum, Moscow, 2013.Google Scholar
  8. 8.
    Srinivasan, G. R., Baeder, J. D., Obayashi, S., and Mc Croskey, W. J., Flow Field of a Lifting Rotor in Hover: A Navier-Stokes Simulation, AIAA Journal, 1992, vol. 30, no. 10, pp. 2371–2378.CrossRefzbMATHGoogle Scholar
  9. 9.
    Johnson, W., Rotorcraft Aeromechanics, New York: Cambridge University Press, 2013, 944 p.CrossRefGoogle Scholar
  10. 10.
    Menter, F. R., Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications, AIAA Journal, 1994, vol. 32, no. 8, pp. 1598–1605.CrossRefGoogle Scholar
  11. 11.
    Caradonna, F. X. and Tung, C., Experimental and analytical studies of a model helicopter rotor in hover, NASA TM-81232, 1981. 58p.Google Scholar
  12. 12.
    Haller, G., An Objective Definition of a Vortex, J. Fluid Mech., 2005, vol. 525, pp. 1–26.CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Johnson, W., Helicopter Theory, N.J.: Princeton University Press, 1980, 502 p.Google Scholar
  14. 14.
    Kocurek J.D. and Tangler J.L., A Prescribed Wake Lifting Surface Hover Performance Analysis, J. of the American Helicopter Society, 1977, vol. 22, no. 1, pp. 24–35.CrossRefGoogle Scholar
  15. 15.
    Landgrebe, A., An Analytical and Experimental Investigation of Helicopter Rotor Hover Performance and Wake Geometry Characteristics, East Hartford, Connecticut: United Aircraft Corporation Research Laboratories, Tech. Rep. 71-24, 1971, 207 p.Google Scholar

Copyright information

© Allerton Press, Inc. 2014

Authors and Affiliations

  • L. I. Garipova
    • 1
    Email author
  • A. S. Batrakov
    • 1
  • A. N. Kusyumov
    • 1
  • S. A. Mikhailov
    • 1
  • G. N. Barakos
    • 2
  1. 1.Tupolev Kazan National Research Technical UniversityKazanTatarstan, Russia
  2. 2.The University of LiverpoolLiverpoolUK

Personalised recommendations