Advertisement

Russian Engineering Research

, Volume 39, Issue 10, pp 901–903 | Cite as

Laser Heat Treatment of Ferrocarbon Powder Steel

  • E. A. MorozovEmail author
  • S. A. OgleznevaEmail author
  • E. V. UsyninEmail author
Article
  • 12 Downloads

Abstract

The laser heat treatment of sintered ZhGr ferrocarbon powder steel with different porosity is considered. The microstructure and microhardness of the steel are determined, and the defects arising in laser treatment are studied.

Keywords:

laser heat treatment powder metallurgy microstructure microhardness porosity ferrocarbon steel 

Notes

REFERENCES

  1. 1.
    Antsiferov, V.N., Akimenko, V.B., and Grevnov, L.M., Poroshkovye legirovannye stali (Powder Alloyed Steels), Moscow: Metallurgiya, 1991.Google Scholar
  2. 2.
    Solov’eva, E.V. and Dovydenkov, V.A., Properties of iron-based materials obtained by infiltration and doped with Ni and Mo, Materialy vserossiiskoi molodezhnoi nauchno-tekhnicheskoi konferentsii “Sovremennoe materialovedenie: traditsii otechestvennykh nauchnykh shkol i innovatsionnyi podkhod” (Proc. All-Russ. Youth Sci.-Tech. Conf. “Modern Materials Science: Traditions of National Scientific Schools and Innovative Approach”), Moscow: Vseross. Inst. Aviats. Mater., 2017, pp. 198–202.Google Scholar
  3. 3.
    Dzyachkova, L.N., Kerzhentseva, L.F., and Vityaz’, P.A., Effect of steel skeleton composition on the triboengineering properties of steel-copper pseudoalloys produced by infiltration, J. Frict. Wear, 2010, vol. 31, no. 4, pp. 270–275.CrossRefGoogle Scholar
  4. 4.
    Privalova, N.N. and Dovydenkov, V.A., Copper infiltrated material for the manufacture of plain bearings, Materialy mezhdunarodnoi mezhdistsiplinaronoi nauchnoi konferentsii “Sotsial’nye, estestvennye i tekhnicheskie sistemy v sovremennom mire: sostoyanie, protivorechiya, razvitie” (Proc. Int. Interdisciplinary Sci. Conf. “Social, Natural, and Technical Systems in the Modern World: Status, Contradictions, and Development”), Shalaev, V.P., Ed., Yoshkar-Ola: Povolzhsk. Gos. Tekh. Univ., 2015, pp. 274–276.Google Scholar
  5. 5.
    Gordeev, Yu.I., Abkaryan, A.K., Surovtsev, A.V., and Lepeshev, A.A., Investigation into the peculiarities of structure formation and properties of copper-based powder pseudoalloys modified by ZnO and TiN nanoparticle additives, Russ. J. Non-Ferrous Met., 2019, vol. 60, no. 1, pp. 68–75.CrossRefGoogle Scholar
  6. 6.
    Privalova, N.N. and Alibekov, S.Ya., Antifriction material for plain bearings, Materialy mezhdunarodnoi mezhdistsiplinarnoi nauchnoi konferentsii “Rossiya v prostranstve global’nykh transformatsii: v fokuse nauk o cheloveke, obshchestve, prirode i tekhnike” (Proc. Int. Interdisciplinary Sci. Conf. “Russia in the Space of Global Transformations: Science about on a Man, Society, and Mechanics”), Shalaev, V.P., Ed., Yoshkar-Ola: Povolzhsk. Gos. Tekh. Univ., 2016, pp. 342–344.Google Scholar
  7. 7.
    Eremeeva, Zh.V., Nikitin, N.M., and Sharipzyanova, G.Kh., Heat treatment of powder steels with alloyed nanoscale additives, Materialy 77-i mezhdunarodnoi nauchno-tekhnicheskoi konferentsii “Avtomobile- i traktorostroenie v Rossii: prioritety razvitiya i podgotovka kadrov” (Proc. 77 Int. Sci.-Tech. Conf. “Automobile and Tractor Manufacturing in Russia: Priorities of Development and Human Resources”), Moscow: Mosk. Gos. Tekh. Univ., MAMI, 2012, pp. 61–70.Google Scholar
  8. 8.
    Grigor’yants, A.G. and Vasil’tsov, V.V., The spatial structure of the radiation of high-power waveguide and fiber lasers, Vestn. Mosk. Gos. Tekh. Univ. im. N.E. Baumana, Ser. Mashinostr., 2012, no. 6, pp. 5–33.Google Scholar
  9. 9.
    Qui, F. and Kujanpää, V., Transformation hardening of medium-carbon steel with a fiber laser: the influence of laser power and laser power density, Mechanika, 2011, vol. 17, no. 3, pp. 318–323.Google Scholar
  10. 10.
    Goia, F. and de Lima, M., Surface hardening of an AISI D6 cold work steel using a fiber laser, J. ASTM Int., 2011, vol. 8, no. 2, pp. 315–318.CrossRefGoogle Scholar
  11. 11.
    Safonov, A.N., Structure and microhardness of the surface layers of iron-carbon alloys after laser heat treatment, Met. Sci. Heat Treat., 1996, vol. 38, nos. 1–2, pp. 68–74.CrossRefGoogle Scholar
  12. 12.
    Astapchik, S.A., Babushkin, V.B., and Ivashko, V.S., Structural and phase transformations in steels and alloys in laser heat treatment, Met. Sci. Heat Treat., 1991, vol. 33, no. 2, pp. 87–93.CrossRefGoogle Scholar
  13. 13.
    Kraposhin, V.S., Effect of residual austenite on properties of steels and pig irons after surface melting, Met. Sci. Heat Treat., 1994, vol. 36, no. 2, pp. 63–68.CrossRefGoogle Scholar
  14. 14.
    Kraposhin, V.S. and Kraposhina, I.F., The effect of laser irradiation parameters on the size of the irradiated zones for steel 45, Fiz. Khim. Obrab. Mater., 1989, no. 6, pp. 19–24.Google Scholar
  15. 15.
    Qui, F. and Kujanpää, V., Transformation hardening of medium carbon steel with a fiber laser, Mechanika, 2011, vol. 17, pp. 318–323.Google Scholar
  16. 16.
    Antsiferov, V.N., Shmakov, A.M., and Shtennikov, S.V., Structure formation mechanisms and properties of powdered carbon steels during laser thermal modification. I. Structure of modified steels, Sov. Powder Metall. Met. Ceram., 1992, vol. 31, no. 7, pp. 613–616.Google Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  1. 1.Perm National Research Polytechnic UniversityPermRussia

Personalised recommendations