Advertisement

Russian Engineering Research

, Volume 38, Issue 12, pp 938–944 | Cite as

Electromagnetoelastic Nano- and Microactuators for Mechatronic Systems

  • S. M. AfoninEmail author
Article
  • 2 Downloads

Abstract

A generalized structural–parametric model of an electromagnetoelastic actuator is derived by solving the wave equation. Its transfer function is determined. The influence of geometric and physical parameters and the external load on its static and dynamic characteristics in the control system is established.

Keywords:

transfer function structural–parametric model electromagnetoelastic actuator deformation longitudinal piezo effect transverse piezo effect shear piezo effect piezoactuator 

Notes

REFERENCES

  1. 1.
    Mironov, V.L., Osnovy skaniruyushchei zondovoi mikroskopii (Principles of Scanning Probe Microscopy), Moscow: Tekhnosfera, 2005.Google Scholar
  2. 2.
    Nikol’skii, A.A., Tochnye dvukhkanal’nye sledyashchie elektroprivody s p’ezokompensatorami (Precise Two-Channel Tracking Electric Actuators with Piezocompensators), Moscow: Energoatomizdat, 1988.Google Scholar
  3. 3.
    Dzhagupov, R.G. and Erofeev, A.A., P’ezoelektronnye ustroistva vychislitel’noi tekhniki, sistem upravleniya i kontrolya: Spravochnik (Piezoelectronic Devices for Computer Technology and Control and Monitoring Systems: A Handbook), St. Petersburg: Politekhnika, 1994.Google Scholar
  4. 4.
    Uchino, K., Piezoelectric Actuators and Ultrasonic Motors, New York: Springer-Verlag, 1997.Google Scholar
  5. 5.
    Panich, A.E., Smotrakov, V.G., Eremkin, V.V., and Vusevker, Yu.A., Prospective use of electrostriction materials, Mikrosist. Tekh., 2002, no. 2, pp. 21–24.Google Scholar
  6. 6.
    Akop’yan, V.A., Panich, A.E., Solov’ev, A.N., and Shevtsov, S.N., Physicomechanical problems and applications of piezoelectric actuators, Nano. Mikrosist. Tekhn., 2006, no. 10, pp. 35–40.Google Scholar
  7. 7.
    Kazakov, V.K., Nikiforov, V.G., Safronov, A.Ya., and Chernov, V.A., Actuators for optical gates and measurement of their characteristics, Nano. Mikrosist. Tekhn., 2007, no. 10, pp. 52–55.Google Scholar
  8. 8.
    Afonin, S.M., Nano- and microscale piezo motors, Russ. Eng. Res., 2012, vol. 32, nos. 7–8, pp. 519–522.CrossRefGoogle Scholar
  9. 9.
    Yang, Y. and Tang, L., Equivalent circuit modeling of piezoelectric energy harvesters, J. Intell. Mater. Syst. Struct., 2009, vol. 20, no. 18, pp. 2223–2235.CrossRefGoogle Scholar
  10. 10.
    Cady, W.G., Piezoelectricity: An Introduction to the Theory and Applications of Electromechanical Phenomena in Crystals, New York: McGraw-Hill, 1946.Google Scholar
  11. 11.
    Physical Acoustics: Principles and Methods, Vol. 1, Part A: Methods and Devices, Mason, W., Ed., New York: Academic, 1964.Google Scholar
  12. 12.
    Polyanin, A.D., Spravochnik po lineinym uravneniyam matematicheskoi fiziki (Handbook on Linear Equations in Mathematical Physics), Moscow: Fizmatlit, 2001.Google Scholar
  13. 13.
    Afonin, S.M., Structural–parametric model of a piezonanomotor, Vestn. Mashinostr., 2001, no. 5, pp. 29–33.Google Scholar
  14. 14.
    Afonin, S.M., Compression and elastic-pliability diagrams of nano-scale piezomotors, Vestn. Mashinostr., 2003, no. 9, pp. 16–18.Google Scholar
  15. 15.
    Afonin, S.M., Absolute stability of automatic control systems of nanodrive piezomotors, Vestn. Mashinostr., 2005, no. 1, pp. 24–27.Google Scholar
  16. 16.
    Afonin, S.M., Static and dynamic characteristics of a multilayer electromagnetoelastic converter in nano- and microdrives, Russ. Eng. Res., 2009, vol. 29, no. 10, pp. 957–967.CrossRefGoogle Scholar
  17. 17.
    Afonin, S.M., Electroelasticity problems for multilayer nano-and micromotors, Russ. Eng. Res., 2011, vol. 31, no. 9, pp. 842–847.CrossRefGoogle Scholar
  18. 18.
    Springer Handbook of Nanotechnology, Bhushan, B., Ed., Berlin: Springer-Verlag, 2004.Google Scholar
  19. 19.
    Encyclopedia of Nanoscience and Nanotechnology, Nalwa, H.S., Eds., Valencia, Ca: Am. Sci. Publ., 2004.Google Scholar
  20. 20.
    Zhou, S. and Yao, Z., Design and optimization of a modal-independent linear ultrasonic motor, IEEE Trans. Ultrason., Ferroelectr. Freq. Control, 2014, vol. 61, no. 3, pp. 535–546.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Moscow Institute of Electronic TechnologyMoscowRussia

Personalised recommendations