Russian Engineering Research

, Volume 38, Issue 11, pp 834–839 | Cite as

SQP Optimization of a Planar Parallel Mechanism: Maximization of Effective Working Zone

  • M. N. ZakharovEmail author
  • P. A. Laryushkin
  • K. G. Erastova


For the example of a planar 3-RRR mechanism of parallel structure, geometric optimization of the mechanism by the SQP method so as to maximize the theoretical and effective working zone is considered, in the case where passage through singular positions is possible.


parallel mechanisms working zone optimization nonlinear programming 



  1. 1.
    Ganiev, R.F. and Glazunov, V.A., Manipulation parallel mechanisms and their applications in modern machine engineering, Dokl. Ross. Akad. Nauk, 2014, no. 4, pp. 1–4.Google Scholar
  2. 2.
    Gosselin, C.M. and Angeles, J., Singularity analysis of closed-loop kinematic chains, IEEE Trans. Rob. Autom., 1990, vol. 6, no. 3, pp. 281–290.CrossRefGoogle Scholar
  3. 3.
    Glazunov, V.A., Koliskor, A.Sh., and Krainev, A.F., Prostranstvennye mekhanizmy parallel’noi struktury (Spatial Parallel Mechanisms), Moscow: Nauka, 1991.Google Scholar
  4. 4.
    Merlet, J.-P., Parallel Robots, Dordrecht: Springer-Verlag, 2006, 2nd ed.zbMATHGoogle Scholar
  5. 5.
    Laryushkin, P.A., Classification and occurrence conditions of singularities in parallel mechanisms, Izv. Vyssh. Uchebn. Zaved., Mashinostr., 2017, no. 1 (682), pp. 16–23.Google Scholar
  6. 6.
    Erastova, K.G. and Laryushkin, P.A., Working zones of parallel structure mechanisms and determination of their shape and size, Izv. Vyssh. Uchebn. Zaved., Tekhnol. Tekst. Prom-sti, 2017, no. 8, pp. 78–87.Google Scholar
  7. 7.
    Laryushkin, P.A. and Palochkin, S.V., Workspace of the parallel structure manipulator with three degrees of freedom, Izv. Vyssh. Uchebn. Zaved., Tekhnol. Tekst. Prom-sti, 2012, no. 3 (339), pp. 92–96.Google Scholar
  8. 8.
    Pashchenko, V.N., Construction of a working zone of a six-degree parallel structure manipulator based on a crank mechanism, Naukovedenie, 2016, vol. 8, no. 3. Accessed September 19, 2017.Google Scholar
  9. 9.
    Erastova, K.G., Laryushkin, P.A., and Glazunov, V.G., Working area and optimal geometric parameters of a spherical parallel structure manipulator, Trudy XXVIII mezhdunarodnoi innovatsionno-orientirovannoi konferentsii molodykh uchenykh i studentov (MIKMUS–2016) (Proc. XXVIII Int. Innovative Conf. of Young Scientists and Students, IICYSS–2016), Moscow: Inst. Mashinoved. im. A.A. Blagonravova, Ross. Akad. Nauk, 2017, pp. 310–313.Google Scholar
  10. 10.
    Zangwill, W.I., Nonlinear Programming: A Unified Approach, Englewood Cliffs, NJ: Prentice-Hall, 1969.zbMATHGoogle Scholar
  11. 11.
    Nocedal, J. and Wright, S.J., Numerical Optimization, New York, Springer-Verlag, 1999.CrossRefzbMATHGoogle Scholar
  12. 12.
    Zakharov, M.N., Prochnostnaya nadezhnost’ oborudovaniya (Strength Reliability of the Equipment), Moscow: Mosk. Gos. Tekh. Univ. im. N.E. Baumana, 2011.Google Scholar
  13. 13.
    Laryushkin, P.A., Glazunov, V.A., and Erastova, K.G., Computation of the maximal actuation efforts in parallel manipulators at a specified value of external load, Mashinostr. Inzh. Obraz., 2016, no. 2 (47), pp. 40–46.Google Scholar
  14. 14.
    Glazunov, V.A., Dugin, E.B., Kistanov, V.A., and Vu, N.B., Optimization of parameters of parallel structure mechanisms based on working space modeling, Probl. Mashinostr. Nadezhnosti Mash., 2005, no. 6, pp. 12–16.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. N. Zakharov
    • 1
    Email author
  • P. A. Laryushkin
    • 1
  • K. G. Erastova
    • 1
  1. 1.Bauman Moscow State Technical UniversityMoscowRussia

Personalised recommendations