Advertisement

Russian Engineering Research

, Volume 38, Issue 11, pp 840–843 | Cite as

Airflow Bypass in Centrifugal Compressor and Operational Stability

  • E. A. LazarevEmail author
  • O. G. Mashkov
  • A. A. Martynov
  • A. N. Pomaz
Article
  • 9 Downloads

Abstract

The influence of the airflow bypass at the impeller input on the operational stability of a compressor is considered. The bypass structure is discussed, and a new chamber design is proposed for a compressor with diffuser blades. Numerical analysis of the flow structure is conducted. The compressor’s margin of operational stability is assessed experimentally for bypass chambers of different geometry.

Keywords:

centrifugal compressor flow section airflow bypass chamber geometry operational stability experimental trials 

Notes

REFERENCES

  1. 1.
    Vyrubov, D.N., Ivashchenko, N.A., Ivin, V.I., et al., Dvigateli vnutrennego sgoraniya: Teoriya porshnevykh i kombinirovannykh dvigatelei (Internal Combustion Engines: Theory of Reciprocating and Combined Engines), Orlin, A.S. and Kruglov, M.G., Eds., Moscow: Mashinostroenie, 1983, 4th ed.Google Scholar
  2. 2.
    Chapman, D.C., Model 250-C30/C28B compressor development, Proc. AGARD Conf. “Centrifugal Compressors, Flow Phenomena and Performance,” Brussels, 1980, vol. 282, no. 20, pp. 13–17.Google Scholar
  3. 3.
    Ivanov, P.V., Specific operation of engine with turbocharger and regulated turbine, Energomashinostroenie, 1963, no. 5, pp. 152–160.Google Scholar
  4. 4.
    GOST (State Standard) R 53637–2009: Automotive Turbochargers. General Technical Requirements and Test Methods, Moscow: Standartinform, 2010.Google Scholar
  5. 5.
    Mohtar, H., Chesse, P., and Chalet, D., Effect of a map width enhancement system on turbocharger centrifugal compressor performance and surge margin, Proc. Inst. Mech. Eng., Part D, 2011, vol. 225, no. 3, pp. 234–241.Google Scholar
  6. 6.
    Scheinert, H. and Sumser, S., US Patent 5863178, 1999.Google Scholar
  7. 7.
    Carr, J.M., Svihla, G.R., and Xiao, X., EP Patent 1557568A2, 2005.Google Scholar
  8. 8.
    Rohne, K.-H., US Patent 4990053, 1991.Google Scholar
  9. 9.
    Gu, R. and Peery, E.S., US Patent 8061974B2, 2008.Google Scholar
  10. 10.
    Iwakiri, Y. and Uchida, H., Numerical fluid analysis of a variable geometry compressor for use in a turbocharger, R&D Rev. Toyota CRDL, 2006, vol. 41, no. 3, pp. 19–21.Google Scholar
  11. 11.
    Uchida, H., Transient performance prediction for turbocharging systems incorporating variable geometry turbochargers, R&D Rev. Toyota CRDL, 2006, vol. 41, no. 3, pp. 23–25.Google Scholar
  12. 12.
    Sharoglazov, B.A., Mashkov, O.G., and Martynov, A.A., Evaluation of the parameters of the turbo-charging unit of a reciprocating transport engine based on non-motor tests, Transp. Urala, 2015, no. 3 (46), pp. 74–78.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. A. Lazarev
    • 1
    Email author
  • O. G. Mashkov
    • 2
  • A. A. Martynov
    • 2
  • A. N. Pomaz
    • 2
  1. 1.South Ural State UniversityChelyabinskRussia
  2. 2.AO SKB TurbinaChelyabinskRussia

Personalised recommendations