Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Effect of Electrochemical Surface Pretreatment on Electro-Catalytic Activity of Copper for Ethanol Oxidation in Alkaline Media

  • 9 Accesses

Abstract

The effect of different electrochemical surface treatments of a copper electrode was studied for electro-catalytic oxidation of ethanol in 1 M NaOH solution. Cyclic voltammetry and impedance spectroscopy techniques were used in this study. The surface morphology of treated electrodes was examined by scanning electron microscopy and atomic force microscopy. The results indicated that the electro-catalytic oxidation of ethanol can be strongly enhanced by electro-deposition of copper particles on the surface of an electrode and also by the anodically modified surface in NaCl solution. This enhanced electrode activity is related to an increase in the effective surface area and/or to an increase in the surface concentration of electro-active molecules or intermediates. In addition, the charge transfer resistance for ethanol oxidation reaction decreased as a result of surface treatments and the double layer capacitance increased due to an increase in surface porosity. Atomic force microscopy showed that surface roughness increased after pre-cycling polarization. The micrographs of the surface showed a micro porous structure.

This is a preview of subscription content, log in to check access.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

REFERENCES

  1. 1

    Shmychkova, O.B., Knysh, V.A., Luk’yanenko, T.V., Amadelli, R., et al., Surf. Eng. Appl. Electrochem., 2018, vol. 54, pp. 38–46.

  2. 2

    Korchagin, O.V., Novikov, V.T., Rakov, E.G., Kuznetsov, V.V., et al., Russ. J. Electrochem., 2010, vol. 46, pp. 882–889.

  3. 3

    Xiong, Z., Yan, B., Zhang, K., Wang, C., et al., J. Taiwan Inst Chem.E, 2017, vol. 75, pp. 12–17.

  4. 4

    Xie, Y., Zhang, H., Yao, G., Khan, S.A., et al., J. Energy Chem., 2017, vol. 26, pp. 193–199.

  5. 5

    Gor’kov, K.V., Zolotukhina, E.V., Mustafina, E.R., and Vorotyntsev, M.A., Russ. J. Electrochem., 2017, vol. 53, pp. 49–57.

  6. 6

    Tarasevich, M.R. and Davydova, E.S., Russ. J. Electrochem., 2016, vol. 52, pp. 193–219.

  7. 7

    Qin, Y.H., Xiong, Z.Y., Ma, J., Yang, L., et al., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 1103–1112.

  8. 8

    Li, T., Fu, G., Su, J., Wang, Y., et al., Electrochim. Acta, 2017, vol. 231, pp. 13–19.

  9. 9

    Hu, X., Lin, C., Wei, L., Hong, C., et al., Electrochim. Acta, 2016, vol. 187, pp. 560–566.

  10. 10

    Du, C., Gao, X., Zhuang, Z., Cheng, C., et al., Electrochim. Acta, 2017, vol. 238, pp. 263–268.

  11. 11

    Kosheleva, A.M., Maksimov, N.G., Kornienko, G.V., and Kornienko, V.L., Russ. J. Electrochem., 2015, vol. 51, pp. 1079–1085.

  12. 12

    Ding, K., Wang, P., Zhao, J., Li, Y., et al., Int. J. Hydrogen Energy, 2017, vol. 42, pp. 9766–9774.

  13. 13

    Shivakumar, M.S. and Krishnamurthy, G., Mater. Today, 2017, vol. 4, pp. 12 012–12 020.

  14. 14

    Chen, G., Pan, Y., Lu, T., Wang, N., et al., Mater. Chem. Phys., 2018, vol. 218, pp. 108–115.

  15. 15

    Ourari, A., Aggoun, D., and Ouahab, L., Inorg. Chem. Commun., 2013, vol. 33, pp. 118–124.

  16. 16

    Pawar, S.M., Pawar, B.S., Inamdar, A.I., Kim, J., et al., Mater. Lett., 2017, vol. 187, pp. 60–63.

  17. 17

    Carugno, S., Chassaing, E., Rosso, M., and González, G.A., Mater. Chem. Phys., 2014, vol. 143, pp. 1012–1017.

  18. 18

    Danaee, I. and Noori, S., Int. J. Hydrogen Energy, 2011, vol. 36, pp. 12 102–12 111.

  19. 19

    Xia, L.P., Guo, P., Wang, Y., Ding, S.Q., et al., J. Power Sources, 2014, vol. 262, pp. 232–238.

  20. 20

    Lu, P., Lei, Y., Lu, S., Wang, Q., et al., Anal. Chim Acta, 2015, vol. 880, pp. 42–51.

  21. 21

    Fan, Y., Liu, P.F., Zhang, Z.W., Cui, Y., et al., J. Power Sources, 2015, vol. 296, pp. 282–289.

  22. 22

    Zhang, Q., Zhang, F., Ma, X., Zheng, Y., et al., J. Power Sources, 2016, vol. 336, pp. 1–7.

  23. 23

    Guo, M., Cheng, Y., Yu, Y., et al., Appl. Surf. Sci., 2017, vol. 416, pp. 439–445.

  24. 24

    Macdonald, J.R., Solid State Ion, 1984, vol. 13, pp. 147–149.

  25. 25

    Jafari, H., Danaee, I., Eskandari, H., and Rashvand Avei, M., J. Mater. Sci. Technol., 2014, vol. 30, pp. 239–252.

  26. 26

    Danaee, I., Jafarian, M., Shahnazi Sangachin, A.A., and Gobal, F., J. New Mater. Electrochem. Syst., 2012, vol. 15, pp. 255–263.

  27. 27

    Jafarian, M., Rashvan Avei, M., Danaee, I., Gobal, F., et al., Chin. J. Catal., 2010, vol. 31, pp. 1351–1357.

  28. 28

    Jafarian, M., Mirzapoor, A., Danaee, I., Shahnazi Sangachin, A.A., et al., Sci. China Chem., 2012, vol. 55, pp. 1819–1824.

  29. 29

    Mukherjee, P., Bagchi, J., Dutta, S., and Swapan Kumar Bhattacharya, S.K., Appl. Catal. B, 2015, vol. 506, pp. 220–227.

  30. 30

    Mukherjee, P., Roy, P.S., and Bhattacharya, S.K., Int. J. Hydrogen Energy, 2015, vol. 40, pp. 13 357–13 367.

  31. 31

    Pérez-Flores, K., Velázquez-Hernández, I., Lair, V., Álvarez-Contreras, L., et al., Mater. Today Energy, 2018, vol. 10, pp. 169–183.

  32. 32

    Dutta, A. and Ouyang, J., Appl. Catal. B, 2014, vols. 158–159, pp. 119–128.

  33. 33

    Hosein Zadeh, A.R., Danaee, I., and Maddahy, M.H., J. Mater. Sci. Technol., 2013, vol. 29, pp. 884–892.

  34. 34

    Karimi, A., Danaee, I., Eskandari, H., and Rashvan Avei, M., Prot. Met. Phys. Chem. Surf., 2015, 51, pp. 899–907.

  35. 35

    Ramesh Kumar, S., Danaee, I., Rashvand Avei, M., and Vijayan, M., J. Mol. Liq., 2015, vol. 212, pp. 168–186.

  36. 36

    Danaee, I. and Bahramipanah, N., Russ. J. Appl. Chem., 2016, vol. 89, pp. 487–497.

  37. 37

    Danaee, I., Bahramipanah, N., Moradi, S., and Nikmanesh, S., J. Electrochem. Sci. Technol., 2016, vol. 7, pp. 153–160.

  38. 38

    Havashinejadian, E., Danaee, I., Eskandari, H., and Nikmanesh, S., J. Electrochem. Sci. Technol., 2017, vol. 8, pp. 115–123.

  39. 39

    McRae, G.A., Maguire, M.A., Jeffrey, C.A., Guzonas, D.A., et al., Appl. Surf. Sci., 2002, vol. 191, pp. 94–105.

Download references

Author information

Correspondence to Niloufar Bahrami Panah.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Niloufar Bahrami Panah, Danaee, I. & Ghamsari, Z.G. Effect of Electrochemical Surface Pretreatment on Electro-Catalytic Activity of Copper for Ethanol Oxidation in Alkaline Media. Surf. Engin. Appl.Electrochem. 55, 630–637 (2019). https://doi.org/10.3103/S1068375519060085

Download citation

Keywords:

  • electro-catalytic oxidation
  • electro-deposition
  • ethanol
  • impedance
  • atomic force microscopy