Preparation and Crystallization Characteristics of Hydrogenated Nanocrystalline Silicon Thin Films by Plasma-Enhanced Chemical Vapor Deposition

  • Yuqing Huang
  • Jian Liu
  • Jia Wang
  • Daxin Bao
  • Shihua HuangEmail author


Both intrinsic and doped hydrogenated nanocrystalline silicon (nc-Si:H) thin films were prepared by plasma-enhanced chemical vapor deposition (PECVD) with various process parameters, such as a hydrogen dilution ratio, power, substrate temperature, and doping ratios of phosphorus or boron. The crystallization characteristics of nc-Si:H thin films grown with various process parameters were carefully and systematically investigated by Raman spectroscopy. Generally speaking, the results show that the higher the hydrogen dilution ratio and power or the lower the doping ratio, the higher the average grain size and the crystalline volume fraction of both thin films prepared and investigated here. In addition, a p-i-n type nc-Si:H thin film solar cell, which has an open circuit voltage of 660 mV and a short circuit current intensity of 13.06 mA/cm2, was directly prepared on a flat transparent conductive glass substrate.


nanocrystalline silicon thin films PECVD Raman spectra 



The authors would like to thank Doctor Baojie Yan for the valuable discussion.


This work was supported by Zhejiang Provincial Natural Science Foundation (grant no. LY17F040001), the Major Research plan of the Zhejiang Provincial Science and Technology (grant no. 2018C01035 ), the Project Program of Hengdian Group DMEGC Magnetics Co., Ltd (grant no. 2016330001002138), the Open Project Program of National Laboratory for Infrared Physics, Chinese Academy of Sciences (grant no. M201503).


The authors declare that they have no conflict of interest.


  1. 1.
    Samanta, S. and Das, D., J. Phys. Chem. Solids, 2017, vol. 105, pp. 90–98.CrossRefGoogle Scholar
  2. 2.
    Jadhavar, A., Pawbake, A., Waykar, R., Jadkar, V., et al., Energy Proc., 2017, vol. 110, pp. 45–52.CrossRefGoogle Scholar
  3. 3.
    Zhou, H.P., Xu, M., Xu, S., Xu, L.X., et al., J. Phys. D: Appl. Phys., 2017, vol. 50, art. ID 385103-1-8.Google Scholar
  4. 4.
    Martuza, M.A., Ghanbarzadeh, S., Lee, C., Con, C., et al., IEEE Trans. Electron Devices, 2018, vol. 65, pp. 584–590.CrossRefGoogle Scholar
  5. 5.
    Yuan, Y., Zhao, W., Ma, J., Yang, Z., et al., Surf. Coat. Technol., 2017, vol. 320, pp. 362–365.CrossRefGoogle Scholar
  6. 6.
    Mehmood, H. and Tauqeer, T., IEE Proc. G: Circuits, Devices Syst., 2017, vol. 11, pp. 666–675.Google Scholar
  7. 7.
    Hsieh, P.Y., Lee, C.Y., and Tai, N.H., J. Mater. Chem. C, 2015, vol. 3, pp. 7513–7522.CrossRefGoogle Scholar
  8. 8.
    Shan, D., Ji, Y., Xu, J., Lu, P., et al., Phys. Status Solidi A, 2016, vol. 213, pp. 1675–1679.CrossRefGoogle Scholar
  9. 9.
    Amor, S.B., Atyaoui, M., Bousbih, R., Haddadi, I., et al., Sol. Energy, 2014, vol. 108, pp. 126–134.CrossRefGoogle Scholar
  10. 10.
    Kearney, B.T., Jugdersuren, B., Queen, D.R., Metcalf, T.H., et al., J. Phys. Condens. Matter, 2018, vol. 30, art. ID 085301-1-8CrossRefGoogle Scholar
  11. 11.
    Kim, D.Y., Kim, I.S., and Choi, S.Y., J. Mater. Res., 2009, vol. 19, pp. 102–107.Google Scholar
  12. 12.
    Huang, S.H., Liu, J., Jing, W.K., Lu, F., et al., Mater. Res. Bull., 2014, vol. 49, pp. 71–75.CrossRefGoogle Scholar
  13. 13.
    Richter, H., Wang, Z.P., and Ley, L., Solid State Commun., 1981, vol. 39, pp. 625–629.CrossRefGoogle Scholar
  14. 14.
    Tong, S., Liu, X., Wang, L., Yan, F., et al., Appl. Phys. Lett., 1996, vol. 69, pp. 596–598.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2019

Authors and Affiliations

  • Yuqing Huang
    • 1
  • Jian Liu
    • 1
  • Jia Wang
    • 1
  • Daxin Bao
    • 2
  • Shihua Huang
    • 1
    Email author
  1. 1.Provincial Key Laboratory of Solid State Optoelectronic Devices, Zhejiang Normal UniversityZhejiangChina
  2. 2.Hengdian Group DMEGC Magnetics Co., Ltd ZhejiangChina

Personalised recommendations