Skip to main content
Log in

Some Problems in Simulation of the Thermodynamic Properties of Droplets

  • Published:
Surface Engineering and Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this paper, the Gibbs dividing surface method is used to derive a formula to determine curvature-dependent surface tension in a system with two phases. The well-known Tolman formula is a special case of this formula. The problem of a sessile droplet is considered. The Bashforth–Adams equation analogue (in view of curvature-dependent surface tension) is obtained, and the numerical solution of the equation is carried out. It is shown that if the droplet size is not very large relative to the thickness of the surface layer (micro- or nanodroplets), the dependence of the surface tension on the curvature is very important. In addition, the case is considered where the diameters of cylindrical nanodroplets are shorter than the Tolman length.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Rusanov, A.I., Fazovye ravnovesiya i poverkhnostnye yavleniya (Phase Equilibria and Surface Phenomena), Leningrad: Khimiya, 1967.

  2. Ono, S. and Kondo, S., Molecular Theory of Surface Tension in Liquids, Berlin: Springer-Verlag, 1960.

    MATH  Google Scholar 

  3. Rowlinson, J.S. and Widom, B., Molecular Theory of Capillarity, Oxford: Clarendon, 1982.

    Google Scholar 

  4. Rekhviashvili, S.Sh. and Kishtikova, E.V., Tech. Phys., 2011, vol. 56, no. 1, pp. 143–146.

    Article  Google Scholar 

  5. Ermakov, G.V. and Semenova, N.M., Fazovye prevrashcheniya i neravnovesnye protsessy (Phase Transformations and Non-Equilibrium Processes), Sverdlovsk, 1980, pp. 81–84.

    Google Scholar 

  6. Fedorov, V.B. and Malyukova, L.V., Dokl. Akad. Nauk SSSR, 1986, vol. 288, no. 3, pp. 673–678.

    Google Scholar 

  7. Ermakov, G.V. and Lipnyagov, E.V., Metastabil’nye sostoyaniya i fazovye perekhody (Metastable States and Phase Transitions), Yekaterinburg: Ural. Otd., Ross. Akad. Nauk, 1997, pp. 100–110.

  8. Kalova, J. and Mares, R., Int. J. Thermophys., 2015, vol. 36, no. 10, pp. 2862–2868.

    Article  Google Scholar 

  9. Burian, S., Isaiev, M., Termentzidis, K., Sysoev, V., et al., Phys. Rev. E, 2017, vol. 95, p. 062801.

    Article  Google Scholar 

  10. Magomedov, M.N., Izuchenie mezhatomnogo vzaimodeistviya, obrazovaniya vakansii i samodiffuzii v kristallakh (The Analysis of Interatomic Interaction, Formation of Vacancies, and Self-Diffusion in Crystals), Moscow: Fizmatlit, 2010.

  11. Adamson, A.W., Physical Chemistry of Surfaces, New York: Wiley, 1973.

    Google Scholar 

  12. Rusanov, A.I and Prokhorov, V.A., Interfacial Tensiometry, Amsterdam: Elsevier, 1996.

    Google Scholar 

  13. Jaycock, M.J. and Parfitt, G.D., Chemistry of Interfaces, Chichester: Ellis Horwood, 1981.

    Google Scholar 

  14. Tolman, R.C., J. Chem. Phys., 1949, vol. 17, no. 3, pp. 333–337.

    Article  Google Scholar 

  15. Miyahara, M., Kanda, H., Yoshioka, T., and Okazaki, M., Langmuir, 2000, vol. 16, no. 9, pp. 4293–4299.

    Article  Google Scholar 

  16. Shcherbakov, L.M., Issledovanie v oblasti poverkhnostnykh sil (Studies in the Field of Surface Tensions), Moscow: Akad. Nauk SSSR, 1961, pp. 28–37.

  17. van der Waals, J.D. and Kohnstamm, P., Lehrbuch der Thermostatik, Vol. 1: Allgemeine Thermostatik, Leipzig: Verlag von Barth, 1927.

    Google Scholar 

  18. Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 26–36.

    Google Scholar 

  19. Landau, L.D., Phys. Z. Sowjetunion, 1937, vol. 11, pp. 545–553.

    Google Scholar 

  20. Baranov, S.A., Handbook of Nanoelectrochemistry: Electrochemical Synthesis Methods, Properties and Characterization Techniques, Zurich: Springer-Verlag, 2015, pp. 1057–1069.

    Google Scholar 

  21. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1958, vol. 28, no. 2, pp. 258–267.

    Article  Google Scholar 

  22. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 1121–1124.

    Article  Google Scholar 

  23. Cahn, J.W. and Hilliard, D.J.E., J. Chem. Phys., 1959, vol. 30, no. 5, pp. 688–699.

    Article  Google Scholar 

  24. Cahn, J.W., Acta Metall., 1961, vol. 9, no. 9, pp. 795–808.

    Article  Google Scholar 

  25. Cahn, J.W., Acta Metall., 1966, vol. 14, no. 12, pp. 1685–1692.

    Article  Google Scholar 

  26. Hillert, M.A., Acta Metall., 1961, vol. 9, no. 6, pp. 525–535.

    Article  Google Scholar 

  27. Cahn, J.W., J. Chem. Phys., 1965, vol. 242, no. 2, pp. 166–179.

    Google Scholar 

  28. Khachaturyan, A.G., Theory of Structural Transformations in Solids, New York: Wiley, 1983.

    Google Scholar 

  29. Radkevich, E.V., Sovremennaya matematika i ee prilozheniya (Modern Mathematics and Its Application), Tbilisi: Inst. Kibern., Akad. Nauk Gruz., 2003, pp. 77–97.

  30. Rapini, A. and Papoular, M.J., J. Phys. Colloq., 1969, vol. 30, pp. C4–C54.

    Article  Google Scholar 

  31. Semenchenko, V.K., Poverkhnostnye yavleniya v rasplavakh i voznikayushchikh iz nikh tverdykh fazakh (Surface Phenomena in Melts and Solid Phases Emerged from These), Nalchik: Kabard.-Balkar. Knizhn. Izd., 1965, pp. 7–11.

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S. A. Baranov or S. Sh. Rekhviashvili.

Additional information

Translated by M. Myshkina

APPENDIX

APPENDIX

The question of the Tolman length, which determines the dimensional effect of the surface tension and the theory application area, is worthy of separate consideration. According to the thermodynamic definition, the Tolman length is numerically equal to the distance between the equimolecular surface and the surface of tension [2]:

$$\delta = {{z}_{e}} - {{z}_{s}},$$
((A.1))

where ze and zs prescribe the factors of the equimolecular surface and the surface of tension on one common semiaxis. The equimolecular surface corresponds to the condition Γ = 0. The dividing surface for which there is valid the Laplace equation is the surface of tension. As a rule, the surface of tension is assumed to be a true dividing surface.

The equimolecular surface and the surface of tension are always situated inside the interphase transition layer, therefore, this layer thickness can be assumed as the highest value of the Tolman length δ [2, p. 44]. For not too little drops the Tolman length can be assumed a constant value related to a plane surface. By convention, the Tolman length for the plane dividing surface is as follows:

$$\delta = \frac{\Gamma }{{\Delta n}},\,\,\,\,\Delta n = {{n}_{1}} - {{n}_{2}},$$
((A.2))

where n1,2 are the volume densities of the equilibrium coexisting phases. There is the conflicting information on the numerical values and even the sign of the Tolman length. It follows from (A.2) that the sign of δ depends on the sign of the Gibbs adsorption on the surface of tension. It is possible to determine the sign of the Tolman length using a well-known formula for the profile of the density distribution on the plane interphase region [3]:

$$n(z) = \frac{{{{n}_{1}} + {{n}_{2}}}}{2} - \frac{{\Delta n}}{2}{\text{tanh}}\left( {\frac{z}{{{{z}_{0}}}}} \right),\,\,\,\,\Delta n > 0,$$
((A.3))

where z is the coordinate; z0 is the parameter characterizing the slope of the density distribution profile. Formula (A.3) prescribes the density distribution profile symmetric about the point z = 0. More dense and less dense phase are placed on the positive and negative semiaxes. For the Gibbs adsorption we have

$$\Gamma = \int\limits_{{{z}_{i}}}^\infty {[n(z) - {{n}_{1}}]\,dz} + \int\limits_{ - \infty }^{{{z}_{i}}} {[n(z) - {{n}_{2}}]\,dz} ,$$
((A.4))

where zi prescribes the place of the arbitrary dividing surface. The integration of (A.4) in view of (A.3) yields:

$$\Gamma = {{z}_{i}}\Delta n.$$
((A.5))

For the equimolecular surface and the surface of tension:

$${{z}_{i}} = 0\,\,{\text{and}}\,\,{{z}_{i}} = {{z}_{s}},$$

therefore, from (A.2) and (A.5) for the Tolman length we find:

$$\delta = {{z}_{s}},$$
((A.6))

where zs is measured from the origin of coordinates, i. e., from the profile center. Formula (A.6) makes possible to deduce that the sign of the Tolman length depends on the fact where the surface of tension is situated. If the surface of tension is near a dense phase (this is, in our opinion, most natural) the Tolman length will be positive. The displacement of the surface of tension into the region of the less dense phase with respect to the equimolecular surface changes the sign of δ for negative one.

Please note that for certain thermodynamic systems the Tolman parameter can be assumed negative, however, here this case is not considered. Thus, according to V.K. Semenchenko [31], for a droplet with the radius r the stability condition has the form \({{({{\partial \sigma } \mathord{\left/ {\vphantom {{\partial \sigma } {\partial r}}} \right. \kern-0em} {\partial r}})}_{{T,p}}} > 0\). It follows that the function σ(r) must be ascending, and for the drop there must be fulfilled a condition of δ > 0.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baranov, S.A., Rekhviashvili, S.S. & Sokurov, A.A. Some Problems in Simulation of the Thermodynamic Properties of Droplets. Surf. Engin. Appl.Electrochem. 55, 286–293 (2019). https://doi.org/10.3103/S1068375519030025

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068375519030025

Keywords:

Navigation