Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 6, pp 555–561 | Cite as

Formation of Bottle-Shaped Pores with Petaloid Shoulder within Anodic Alumina



Porous anodic alumina (PAA) with distinct bottle-shaped pore channels was fabricated through annealing, reanodisation and chemical etching from phosphoric acid PAA. The effects of annealing at the elevated temperature up to 600°C on the subsequent treatments have been explored to obtain largest differential diameters of the two sections. It is shown that the structural change in the barrier layer induced by annealing at 500°C can be reversed by reanodisation, which is crucial for the fabrication process. Under proper conditions, the diameters of the two sections obtained are about 345 and 220 nm, respectively. Potential applications of such PAA include nano-structured material synthesis and through-hole membrane fabrication. Petaloid shoulder consisting of regular ridges and depressions was clearly revealed in the transition region, which can be attributed to the structural variation induced by a non-uniform electric field around the barrier layer within each cell. The redistribution of the space charge during annealing may enhance the variation of the electric field and hence preferred etching.


annealing reanodisation chemical etching electric field space charge 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lee, W. and Park, S., Chem. Rev., 2014, vol. 114, no. 15, pp. 7487–7556.CrossRefGoogle Scholar
  2. 2.
    Yang, C., Zhong, Z., and Lieber, C.M., Science, 2005, vol. 310, no. 5752, pp. 1304–1307.CrossRefGoogle Scholar
  3. 3.
    Pitzschel, K., Moreno, J.M.M., Escrig, J., Albrecht, O., et al., ACS Nano, 2009, vol. 3, no. 11, pp. 3463–3468.CrossRefGoogle Scholar
  4. 4.
    Hochbaum, A.I., Chen, R., Delgado, R.D., Liang, W., et al., Nature, 2008, vol. 451, no. 7175, pp. 163–167.CrossRefGoogle Scholar
  5. 5.
    Asoh, H. and Ono, S., ATB Métall., 2003, vol. 43, nos. 1–2, pp. 319–322.Google Scholar
  6. 6.
    Martín, J., Martín-González, M., Francisco Fernández, J., and Caballero-Calero, O., Nat. Commun., 2014, vol. 5, art. ID 5130.CrossRefGoogle Scholar
  7. 7.
    Santos, A., Kumeria, T., Wang, Y., and Losic, D., Nanoscale, 2014, vol. 6, no. 17, pp. 9991–9999.CrossRefGoogle Scholar
  8. 8.
    Lee, W., Schwirn, K., Steinhart, M., Pippel, E., et al., Nat. Nanotechnol., 2008, vol. 3, no. 4, pp. 234–239.CrossRefGoogle Scholar
  9. 9.
    De Graeve, I., Laha, P., Goossens, V., Furneaux, R., et al., Surf. Coat. Technol., 2011, vol. 205, no. 19, pp. 4349–4354.CrossRefGoogle Scholar
  10. 10.
    Asoh, H., Tanabe, K., and Ono, S., J. Surf. Finish. Soc. Jpn., 2002, vol. 53, no. 11, pp. 777–778.CrossRefGoogle Scholar
  11. 11.
    Liao, J., Ling, Z., Li, Y., and Hu, X., Appl. Surf. Sci., 2015, vol. 353, pp. 1342–1349.CrossRefGoogle Scholar
  12. 12.
    Crevecoeur, C. and de Wit, H.J., J. Electrochem. Soc., 1974, vol. 121, no. 11, pp. 1465–1474.CrossRefGoogle Scholar
  13. 13.
    Lohrengel, M.M., Mater. Sci. Eng., R, 1993, vol. 11, no. 6, pp. 243–294.CrossRefGoogle Scholar
  14. 14.
    Wu, H. and Hebert, K.R., Electrochim. Acta, 2002, vol. 47, no. 9, pp. 1373–1383.CrossRefGoogle Scholar
  15. 15.
    Ispas, A., Bund, A., and Vrublevsky, I., J. Solid State Electrochem., 2010, vol. 14, no. 11, pp. 2121–2128.CrossRefGoogle Scholar
  16. 16.
    Dignam, M.J., The kinetics of the growth of oxides, in Electrochemical Materials Science, New York: Springer-Verlag, 1981, pp. 247–306.CrossRefGoogle Scholar
  17. 17.
    Young, L. and Smith, D.J., J. Electrochem. Soc., 1979, vol. 126, no. 5, pp. 765–768.CrossRefGoogle Scholar
  18. 18.
    Fisher, J.C., Vermilyea, D.A., and Bean, C.P., Phys. Rev., 1956, vol. 101, no. 2, pp. 551–554.CrossRefGoogle Scholar
  19. 19.
    de Wit, H.J., Wijenberg, C., and Crevecoeur, C., J. Electrochem. Soc., 1979, vol. 126, no. 5, pp. 779–785.CrossRefGoogle Scholar
  20. 20.
    Masuda, T., Asoh, H., Haraguchi, S., and Ono, S., Materials, 2015, vol. 8, no. 3, p. 1350.CrossRefGoogle Scholar
  21. 21.
    Vrublevsky, I., Parkoun, V., Schreckenbach, J., and Goedel, W.A., Appl. Surf. Sci., 2006, vol. 252, no. 14, pp. 5100–5108.CrossRefGoogle Scholar
  22. 22.
    Vermilyea, D.A., J. Electrochem. Soc., 1957, vol. 104, no. 8, pp. 485–488.CrossRefGoogle Scholar
  23. 23.
    Shimizu, K., Thompson, G.E., Wood, G.C., and Kobayashi, K., Philos. Mag. Lett., 1990, vol. 61, no. 3, pp. 133–137.CrossRefGoogle Scholar
  24. 24.
    Le Coz, F., Arurault, L., Fontorbes, S., Vilar, V., et al., Surf. Interface Anal., 2010, vol. 42, no. 4, pp. 227–33.CrossRefGoogle Scholar
  25. 25.
    Akinci, Z.B. and Ürgen, M., ECS Electrochem. Lett., 2014, vol. 3, no. 10, pp. D46–D49.CrossRefGoogle Scholar
  26. 26.
    Ke, N.J., Downard, A.J., and Golovko, V.B., RSC Adv., 2015, vol. 5, no. 33, pp. 25747–25754.CrossRefGoogle Scholar
  27. 27.
    Yuan, J.H., He, F.Y., Sun, D.C., and Xia, X.H., Chem. Mater., 2004, vol. 16, no. 10, pp. 1841–1844.CrossRefGoogle Scholar
  28. 28.
    Liao, J., Ling, Z., Li, Y., and Hu, X., Electrochem. Commun., 2015, vol. 58, pp. 37–40.CrossRefGoogle Scholar
  29. 29.
    Liao, J., Ling, Z., Li, Y., and Hu, X., ACS Appl. Mater. Int., 2016, vol. 8, no. 12, pp. 8017–8023.CrossRefGoogle Scholar
  30. 30.
    Houser, J.E. and Hebert, K.R., J. Electrochem. Soc., 2006, vol. 153, no. 12, pp. B566–B573.CrossRefGoogle Scholar
  31. 31.
    Houser, J.E. and Hebert, K.R., Nat. Mater., 2009, vol. 8, no. 5, pp. 415–420.CrossRefGoogle Scholar
  32. 32.
    Nigo, S., Kubota, M., Harada, Y., Hirayama, T., et al., J. Appl. Phys., 2012, vol. 112, no. 3, p. 33711.CrossRefGoogle Scholar
  33. 33.
    Nielsch, K., Choi, J., Schwirn, K., Wehrspohn, R.B., et al., Nano Lett., 2002, vol. 2, no. 7, pp. 677–680.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Electronic Materials Science and EngineeringSouth China University of TechnologyGuangzhouP.R. China
  2. 2.Guangdong Fenghua Advanced Technology Holding Co., LtdZhaoqingP.R. China

Personalised recommendations