Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 5, pp 508–517 | Cite as

The Effect of Time and Temperature of Nitridation-Oxidation Process on Properties and Corrosion Resistance of AISI 316L Steel

  • Milad Yazdkhasti
  • Sayed Ahmad Hosseini
  • Hamidreza Javadinejad
  • Hossein Zare
  • Mohsen Saboktakin RiziEmail author
  • Hamidreza Abedi


In this research, AISI 316L austenitic stainless steel has been subjected to plasma nitriding and oxidation- nitridation heat treatment at several temperatures for different times. Plasma nitriding of the samples was performed in N2/H2 = 1/3 atmosphere at temperatures of 425, 450, and 475°C for 5 h. To study the effects of the combined nitridation-oxidation process on mechanical and physical properties, the samples have been exposed in O2/H2 = 1/5 oxidating atmosphere at 425, 450, and 500°C for 15, 30, and 60 min, respectively. The mechanical and physical properties of the samples were studied after nitridation-oxidation heat treatment. The microstructural properties were examined by optical microscopy and scanning electron microscopy; the phases were analyzed by X-ray diffraction. The wear behavior of the oxidized-nitrided samples was studied using pin-on-disk tribotesting. The hardness and depth of the nitrided layer were measured by a Vickers hardness tester. The corrosion resistance of both untreated and treated samples was tested by the Tafel polarization and potentiodynamic polarization in 3.5% NaCl solution at ambient temperature. The results indicate that the combined nitridation-oxidation heat treatment improves both the pitting corrosion and wear resistances of AISI 316L steel and further increases its hardness.


AISI 316L austenitic stainless steel plasma nitriding combined nitridation-oxidation heat treatment wear resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Sun, Y. and Bell, T., Wear, 1998, vol. 218, no. 1, pp. 34–42.CrossRefGoogle Scholar
  2. 2.
    Jeong, B.-Y. and Kim, M.-H., Surf. Coat. Technol., 2001, vol. 141, pp. 262–268.CrossRefGoogle Scholar
  3. 3.
    Hoppe, S., Surf. Coat. Technol., 1998, vol. 98, pp. 1199–1204.CrossRefGoogle Scholar
  4. 4.
    Borgioli, F., Galvanetto, E., Fossati, A., and Bacci, T., Surf. Coat. Technol., 2003, vol. 162, pp. 61–66.CrossRefGoogle Scholar
  5. 5.
    Li, C. and Bell, T., Wear, 2004, vol. 256, pp. 1144–1152.CrossRefGoogle Scholar
  6. 6.
    Li, X.Y., Surf. Eng., 2001, vol. 17, pp. 147–152.CrossRefGoogle Scholar
  7. 7.
    Pye, D., Practical Nitriding and Ferritic Nitrocarburizing, Materials Park: ASM Int., 2003, pp. 31–38.Google Scholar
  8. 8.
    Mingolo, N., Tschiptschin, A.P., and Pinedo, C.E., Surf. Coat. Technol., 2006, vol. 201, pp. 4215–4218.CrossRefGoogle Scholar
  9. 9.
    Xiaolei, X., Liang, W., Zhiwei, Y., and Zukun, H., Surf. Coat. Technol., 2005, vol. 192, pp. 220–224.CrossRefGoogle Scholar
  10. 10.
    Fossati, A., Borgioli, F., Galvanetto, E., and Bacci, T., Surf. Coat. Technol., 2006, vol. 200, pp. 3511–3517.CrossRefGoogle Scholar
  11. 11.
    Nosei, L., Avalos, M., Gómez, B.J., Náchez, L., et al., Thin Solid Films, 2004, vol. 468, pp. 134–141.CrossRefGoogle Scholar
  12. 12.
    Xu, X.L., Wang, L., Yu, Z.W., and Hei, Z.K., Surf. Coat. Technol., 2000, vol. 132, pp. 270–274.CrossRefGoogle Scholar
  13. 13.
    Menthe, E. and Rie, K.-T., Surf. Coat. Technol., 1999, vols. 116–119, pp. 199–204.Google Scholar
  14. 14.
    Hong, J.M., Cho, Y.R., Kim, D.J., Baek, J.M., et al., Surf. Coat. Technol., 2000, vol. 131, pp. 547–551.CrossRefGoogle Scholar
  15. 15.
    Lee, I., Surf. Coat. Technol., 2004, vols. 188–189, pp. 669–674.Google Scholar
  16. 16.
    Baranowska, J., Surf. Coat. Technol., 2004, vols. 180–181, pp. 145–149.CrossRefGoogle Scholar
  17. 17.
    Sobiecki, J.R., Patejuk, A., Bogdanowicz, Z., and Kowalczyk, S., Mater. Sci. Eng., A, 2004, vol. 382, pp. 198–202.CrossRefGoogle Scholar
  18. 18.
    Alsaran, A., Altun, H., Karakan, M., and Çelik, A., Surf. Coat. Technol., 2004, vol. 176, pp. 344–348.CrossRefGoogle Scholar
  19. 19.
    Boyer, H.E., Practical Heat Treatment, Materials Park: ASM Int., 1984, pp. 136–148.Google Scholar
  20. 20.
    ASM Handbook, Vol. 13C: Corrosion: Environments and Industries, Cramer, S.D. and Covino, B.S., Jr., Eds., Materials Park: ASM Int., 2006.Google Scholar
  21. 21.
    Gil, L., Brühl, S., Jiménez, L., Leon, O., et al., Surf. Coat. Technol., 2006, vol. 201, pp. 4424–4429.CrossRefGoogle Scholar
  22. 22.
    Nosei, L., Farina, S., Ávalos, M., Náchez, L., et al., Thin Solid Films, 2008, vol. 516, pp. 1044–1050.CrossRefGoogle Scholar
  23. 23.
    Li, C. and Bell, T., Corros. Sci., 2004, vol. 46, pp. 1527–1547.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • Milad Yazdkhasti
    • 1
  • Sayed Ahmad Hosseini
    • 2
  • Hamidreza Javadinejad
    • 1
  • Hossein Zare
    • 1
  • Mohsen Saboktakin Rizi
    • 1
    Email author
  • Hamidreza Abedi
    • 3
  1. 1.Department of Industrial Engineering, Lenjan BranchIslamic Azad UniversityIsfahanIran
  2. 2.University of Applied Sciences and Technology (UAST)ShahrekordIran
  3. 3.Department of Materials EngineeringIsfahan University of TechnologyIsfahanIran

Personalised recommendations