Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 5, pp 437–445 | Cite as

On Application of Carbon-Containing Electrode Materials in Technology of Electrospark Alloying: Part 1. Peculiarities of Coating Formation Using Electrospark Treatment of Titanium Alloy OT4-1

  • A. E. Kudryashov
  • Zh. V. Eremeeva
  • E. A. Levashov
  • V. Yu. Lopatin
  • A. V. Sevost’yanova
  • E. I. Zamulaeva
Article
  • 13 Downloads

Abstract

Electrospark treatment of OT4-1 titanium alloy was performed sequentially with a STIM-20N hard-alloy electrode (TiC–20% Ni) and carbon-containing material (graphite and carbon-based composite materials). Kinetics of the mass transfer of the hard-alloy electrode was studied. The cathode mass loss during the first minute of the treatment was established. The kinetics results were processed using the methods of mathematical statistics. The erosion resistance of the applied carbon-containing materials was determined. Phase composition and relief of the coatings formed were analyzed. It was found that the application of the carbon-containing material increases the content of refractory phases in the coatings. Increase in the time of the treatment using the carbon-containing materials decreases the roughness of the coatings.

Keywords

electrospark alloying self-propagating high-temperature synthesis electrode material coating pulse discharge carbon-containing materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Gitlevich, A.E., Mikhailov, V.V., Parkanskii, N.Ya., et al., Elektroiskrovoe legirovanie metallicheskikh poverkhnostei (Electrospark Alloying of Metal Surfaces), Chisinau: Shtiintsa, 1985.Google Scholar
  2. 2.
    Nikolenko, S.V. and Verkhoturov, A.D., Novye elektrodnye materialy dlya elektroiskrovogo legirovaniya (New Electrode Materials for Electrospark Alloying), Vladivostok: Dal’nauka, 2005.Google Scholar
  3. 3.
    Levashov, E.A., Kudryashov, A.E., Sheveiko, A.N., et al., Tsvetn. Met., 2003, no. 6, pp. 73–77.Google Scholar
  4. 4.
    Kudryashov, A.E., Levashov, E.A., Aksenov, L.B., and Petrov, V.M., Metallurgist, 2010, vol. 54, nos. 7–8, pp. 514–522. https://doi.org/10.1007/s11015-010-9332-z.CrossRefGoogle Scholar
  5. 5.
    Kudryashov, A.E., Doronin, O.N., Zamulaeva, E.I., et al., Chern. Met., 2013, no. 10, pp. 61–68.Google Scholar
  6. 6.
    Burumkulov, F.Kh., Velichko, S.A., Denisov, V.A., et al., Dostizh. Nauki Tekh. APK, 2009, no. 10, pp. 49–52.Google Scholar
  7. 7.
    Mikhailyuk, A.I. and Zhitaru, R.P., Surf. Eng. Appl. Electrochem., 2008, vol. 44, no. 5, pp. 383–389. doi 10.3103/S1068375513050074CrossRefGoogle Scholar
  8. 8.
    Ri, H., Eremina, K.P., and Khimukhin S.N., Vestn. Tikhookean. Gos. Univ., 2014, no. 3 (34), pp. 89–94.Google Scholar
  9. 9.
    Radek, N. and Bartkowiak, K., Phys. Proc., 2012, vol. 39, pp. 295–301. doi 10.1016/j.phpro.2012.10.041CrossRefGoogle Scholar
  10. 10.
    Feldshtein, E.E., Kardapolova, M.A., Gaida, R., Khorodyski, B., et al., J. Frict. Wear, 2013, vol. 34, no. 2, pp. 137–141. doi 10.3103/S1068366613020049CrossRefGoogle Scholar
  11. 11.
    Ivashchenko, E.V., Smolina, I.V., and Gavrilyuk, Yu.N., Visn. Kremenchug. Nats. Univ. im. Mikhaila Ostrograds’kogo, 2012, no. 6 (77), pp. 17–21.Google Scholar
  12. 12.
    Verkhoturov, A.D., Formirovanie poverkhnostnogo sloya metallov pri elektroiskrovom legirovanii (Formation of Metal Surfaces by Electrospark Alloying), Vladivostok: Dal’nauka, 1995.Google Scholar
  13. 13.
    Verkhoturov, A.D., Podchernyaeva, I.A., Pryadko, L.F., and Egorov, F.F., Elektrodnye materialy dlya elektroiskrovogo legirovaniya (Electrode Materials for Electrospark Alloying), Moscow: Nauka, 1988.Google Scholar
  14. 14.
    Safronov, I.I., Tsurkan, I.V., Fateev, V.V., and Semenchuk, A.V., Elektroerozionnye protsessy na elektrodakh i mikrostrukturno-fazovyi sostav legirovannogo sloya (Electroerosion on Electrodes and Microstructure-Phase Composition of Alloyed Layer), Chisinau: Shtiintsa, 1999.Google Scholar
  15. 15.
    Mikhailyuk, A.I., Surf. Eng. Appl. Electrochem., 2003, no. 3, pp. 21–22.Google Scholar
  16. 16.
    Mikhailyuk, A.I. and Gitlevich, A.E., Surf. Eng. Appl. Electrochem., 2010, vol. 46, no. 5, pp. 424–430. doi 10.3103/S1068375510050054CrossRefGoogle Scholar
  17. 17.
    Krushenko, G.G. and Reshetnikova, S.N., Vestn. Sib. Gos. Agrar. Univ., 2008, no. 3, pp. 113–117.Google Scholar
  18. 18.
    Zamulaeva, E.I., Levashov, E.A., Skryleva, E.A., Sviridova, T.A., et al., Surf. Coat. Technol., 2016, vol. 298, pp. 15–23. doi 10.1016/j.surfcoat.2016.04.058CrossRefGoogle Scholar
  19. 19.
    Tang, C.-B., Liu, D.-X., Wang, Z., and Gao, Y., Appl. Surf. Sci., 2011, vol. 257, pp. 6364–6371. doi 10.1016/j.apsusc.2011.01.120CrossRefGoogle Scholar
  20. 20.
    Fialkov, A.S., Uglerod, mezhsloevye soedineniya i kompozity na ikh osnove (Carbon, Interlayer Bonds and Their Composites), Moscow: Aspekt Press, 1997.Google Scholar
  21. 21.
    Levashov, E.A., Rogachev, A.S., Kurbatkina, V.V., Maksimov, Yu.M., et al., Perspektivnye materialy i tekhnologii samo-rasprostranyayushchegosya vysokotemperaturnogo sinteza (Advanced Materials and Technologies of Self-Propagating High-Temperature Synthesis), Moscow: Mosk. Inst. Stali Splavov, 2011.Google Scholar
  22. 22.
    Levashov, E.A., Pogozhev, Yu.S., Kudryashov, A.E., Rupasov, S.I., et al., Russ. J. Non-Ferrous Met., 2008, vol. 49, no. 5, pp. 397–403. https://doi.org/10.3103/S1067821208050167CrossRefGoogle Scholar
  23. 23.
    Novik, F.S. and Arsov, Ya.B., Optimizatsiya protsessov tekhnologii metallov metodami planirovaniya eksperimentov (Optimization of Metal Technologies by Experiment Planning), Moscow: Mashinostroenie, 1980.Google Scholar
  24. 24.
    Shelekhov, E.V. and Sviridova, T.A., Met. Sci. Heat Treat., 2000, vol. 42, no. 8, pp. 309–313.CrossRefGoogle Scholar
  25. 25.
    Mikhailov, V.V., Bachu, K.A., Pasinkovskii, E.A., and Peretyatku, P.V., Elektron. Obrab. Mater., 2006, no. 3, pp. 106–111.Google Scholar
  26. 26.
    Mikhailov, V.V., Gitlevich, A.E., Verkhoturov, A.D., Mikhailyuk, A.I. et al. Surf. Eng. Appl. Electrochem., 2013, vol. 49, no. 5, pp. 373–395. doi 10.3103/S1068375513050074CrossRefGoogle Scholar
  27. 27.
    Kosolapova, T.Ya., Karbidy (Carbides), Moscow: Metallurgiya, 1968.Google Scholar
  28. 28.
    Kiparisov, S.S., Levinskii, Yu.V., and Petrov, A.P., Karbid titana: poluchenie, svoistva, primenenie (Titanium Carbide: Production, Properties, and Application), Moscow: Metallurgiya, 1987.Google Scholar
  29. 29.
    Zueva, L.V. and Gusev, A.I., Phys. Solid State, 1999, vol. 41, no. 7, pp. 1032–1038.CrossRefGoogle Scholar
  30. 30.
    Holleck, H., Binäre und ternäre Carbid-und Nitridsysteme der Übergangsmetalle (Materialkundlich-Technische Reihe), Berlin: Borntraeger, 1984.Google Scholar
  31. 31.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Knunyants, I.L., Ed., Moscow: Sovetskaya Entsiklopediya, 1988, vol. 1.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • A. E. Kudryashov
    • 1
  • Zh. V. Eremeeva
    • 1
  • E. A. Levashov
    • 1
  • V. Yu. Lopatin
    • 1
  • A. V. Sevost’yanova
    • 1
  • E. I. Zamulaeva
    • 1
  1. 1.National University of Science and Technology MISiSMoscowRussia

Personalised recommendations