Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 5, pp 524–533 | Cite as

Comparative Study of Mechanical and Tribological Properties of Alumina Coatings Formed on 5754 Aluminium Alloy under Various Conditions

  • I. Kessentini
  • S. Zouari
  • A. Bakir
  • M. Bargui


In this paper we present the results of the comparative study of the performance of two sulfuric and oxalic anodizing process already retained, based on the superposition of the surface responses. For this purpose two Doehlert experimental designs with three variables (temperature, current density, sulphuric acid concentration) and other three variables (temperature, current density, oxalic acid concentration) were realized. Three responses were studied, namely: growth rate, Vickers microhardness, wear rate after friction test of the anodic oxide layer. A comparative study based on the surface responses was carried out. Compared with the sulphuric acid bath, it was found that the oxalic acid bath affords low growth rates, high wear resistance and high microhardness but less ductile layers. The observed mechanical properties of the oxide layers can be related to their morphology revealed by the scanning electron microscopy and optical observations and their chemical composition determined by the glow-discharge optical emission spectroscopy.


alumina coating anodizing process Vickers microhardness wear 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Baumeister, J., Banhart, J., and Weber, M., Mater. Des., 1997, vol. 18, pp. 217–220.CrossRefGoogle Scholar
  2. 2.
    King, F., Aluminium and Its Alloys, Chichester: Ellis Horwood, 1987.Google Scholar
  3. 3.
    Wernick, S., Pinner, R., and Sheasby, P.G., The Surface Treatment and Finishing of Aluminum and Its Alloys, Materials Park, OH: ASM Int., 1987, 5th ed.Google Scholar
  4. 4.
    Young, L., Anodic Oxide Films, London: Academic, 1961.Google Scholar
  5. 5.
    Mezlini, S., Elleuch, K., and Kapsa, Ph., Surf. Coat. Technol., 2007, vol. 201, pp. 7855–7864.CrossRefGoogle Scholar
  6. 6.
    Lopez, V., Otero, E., Bautista, A., and Gonzalez, J.A., Surf. Coat. Technol., 2000, vol. 124, pp. 76–84.CrossRefGoogle Scholar
  7. 7.
    Jagminas, A., Bigeliene, D., Mikulskas, I., and Tomasiunas, R.J., Cryst. Growth, 2001, vol. 233, pp. 591–598.CrossRefGoogle Scholar
  8. 8.
    Lunder, O., Walmsley, J.C., Mack, P., and Nisancioglu, K., Corros. Sci., 2005, vol. 124, pp. 1604–1624.CrossRefGoogle Scholar
  9. 9.
    Shih, H.-H. and Tzou, S.-L., Surf. Coat. Technol., 2000, vol. 124, pp. 278–285.CrossRefGoogle Scholar
  10. 10.
    Moutarlier, V., Gigandet, M.P., Pagetti, J., and Normand, B., Surf. Coat. Technol., 2004, vol. 182, pp. 117–123.CrossRefGoogle Scholar
  11. 11.
    Domingues, L., Fernandes, J.C.S., Belo, M.D.C., Ferreira, M.G.S., et al., Corros. Sci., 2003, vol. 45, pp. 149–160.CrossRefGoogle Scholar
  12. 12.
    Bargui, M., Elleuch, K., Wery, M., and Ayedi, H.F., Surf. Eng. Appl. Electrochem., 2017, vol. 53, p. 371.CrossRefGoogle Scholar
  13. 13.
    Escobar, J., Arurault, L., and Turq, V., Appl. Surf. Sci., 2012, vol. 258, pp. 8199–8208.CrossRefGoogle Scholar
  14. 14.
    Doehlert, D.H., Appl. Stat., 1970, vol. 19, p. 231.CrossRefGoogle Scholar
  15. 15.
    Goupy, J., Plans d’expériences pour surfaces de réponse, Paris: Dunod, 1999.Google Scholar
  16. 16.
    Khuri, A.I. and Cornell, J.A. Response Surfaces: Designs and Analyses, New York: M. Dekker, 1996.zbMATHGoogle Scholar
  17. 17.
    Mathieu, D. and Phan-Tan-Luu, R., Plans d’Expériences: applications à l’entreprise, Paris: Technip, 1995.Google Scholar
  18. 18.
    Mathieu, D., Noney, J., and Phan-Tan-Luu, R., NEMROD-W Software, Marseille: Lprai, 2002.Google Scholar
  19. 19.
    Bensalah, W., Elleuch, K., Feki, M., Wery, M., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 7855–7864.CrossRefGoogle Scholar
  20. 20.
    Chalumeau, L., Wery, M., Ayedi, H.F., Chabouni, M.M., et al., Surf. Coat. Technol., 2000, vol. 132, pp. 105–110.CrossRefGoogle Scholar
  21. 21.
    Fisher, R.A. and Yates, F., Statistical Tables for Biological and Agricultural, and Medical Research, Edinburgh: Olivier Boyd, 1948.zbMATHGoogle Scholar
  22. 22.
    Fisher, R.A. and Yates, F., Statistical Tables for Biologic and Agricultural and Medical Research, London: Olivier and Boyd, 1948.zbMATHGoogle Scholar
  23. 23.
    O’Sullivan, J.P. and Wood, G.C., Proc. R. Soc. London, Ser. A, 1970, vol. 317, pp. 511–543.CrossRefGoogle Scholar
  24. 24.
    Rasmussen, J., Met. Finish., 2001, vol. 99, pp. 46–51.CrossRefGoogle Scholar
  25. 25.
    Li, X., Nie, X., Wang, L., and Northwood, D.O., Surf. Coat. Technol., 2005, vol. 200, pp. 1994–2000.CrossRefGoogle Scholar
  26. 26.
    Aerts, T., De Graeve, I., and Terryn, H., Electrochim. Acta, 2001, vol. 54, pp. 270–279.CrossRefGoogle Scholar
  27. 27.
    Aurongzeb, D., Appl. Surf. Sci., 2005, vol. 252, pp. 872–877.CrossRefGoogle Scholar
  28. 28.
    Liu, W., Zuo, Y., Tang, Y., and Zhao, X., Surf. Coat. Technol., 2008, vol. 202, pp. 4181–4188.Google Scholar
  29. 29.
    Aerts, T., Dimogerontakis, Th., De Graeve, I., Fransaer, J., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 7310–7317.CrossRefGoogle Scholar
  30. 30.
    Guezmil, M., Bensalah, W., Khalladi, A., Elleuch, K., et al., Trans. Nonferrous. Met. Soc. China, 2015, vol. 25, pp. 1950–1960.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Département de Génie des ProcédésUnité de Recherche Matériaux et Procédés (URMP), ISETSSfaxTunisia
  2. 2.Département de Génie des MatériauxLaboratoire de Génie des Matériaux et Environnement (LGME), ENISSfaxTunisia

Personalised recommendations