Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 5, pp 481–497 | Cite as

Kinetics of Antioxidant Activity of α-Tocopherol and Some of Its Homologues: Part 1. Review: Theoretical Model

  • E. Yu. Kanarovskii
  • O. V. Yaltychenko
  • N. N. Gorinchoy


The first part of the theoretical study devoted to the description of the kinetics and mechanism of the lipid peroxidation process involving the complexes of cytochrome c and cardiolipin with account for the effect of an antioxidant is presented. The main components of the ROS (reactive oxygen species) and AOD (antioxidant defense) systems and their properties are considered. The key features of the activity of these systems and various channels of the influence of their components on each other, both intrasystemic and intersystemic, important for the optimal interaction of these systems in the organism, are discussed. Special attention is paid in the review to the experimental works where the properties and structure of the cytochrome c and cardiolipin complexes of various types, along with their peroxidase activity, are studied. In addition to two known ways to control the peroxidase activity of these complexes discussed in the literature, it is proposed to consider another way, which is connected with a possibility to include the lipophilic antioxidant molecules into the composition of the complexes under study. The proposed way to regulate the peroxidase activity, increasing the effectiveness of the peroxidase process control, opens up new opportunities to regulate the process of the apoptosis of cells. Based on the analysis of experimental works on this problem, a theoretical kinetic model of the peroxidase process is formulated, which includes two reaction pathways: an enzymatic pathway involving the complexes of cytochrome c and cardiolipin and a non-enzymatic pathway involving free radicals. A system of differential equations that describes the kinetics of the lipid peroxidation process is constructed with account for the inhibiting effect of the antioxidant. The obtained model system of the kinetic equations will be used to study and compare the antioxidant activity of vitamin E (α-tocopherol) and some of its homologues with a shortened side chain, relying on the available theoretical and experimental data.


antioxidant activity complex of cardiolipin and cytochrome c lipid peroxidation chemical kinetics free radicals α-tocopherol 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Halliwell, B. and Gutteridge, J.M.C., Free Radical Biology and Medicine, Oxford: Oxford Univ. Press, 2015, 5th ed.CrossRefGoogle Scholar
  2. 2.
    Kulinskii, V.I., Sorosovskii Obraz. Zh., 1999, vol. 5, no. 1, pp. 2–7.Google Scholar
  3. 3.
    Vladimirov, Yu.A., General pathology of the cell, in Patologicheskaya fiziologiya. Uchebnik dlya meditsinskikh vuzov (Pathological Physiology: Manual for Medical Education Institutions), Ado, A.D., Ed., Moscow: Triada, 2000, pp. 16–50.Google Scholar
  4. 4.
    Men’shchikova, E.B., Lankin, V.Z., and Kandalintseva, N.V., Fenol’nye antioksidanty v biologii i meditsiny. Stroenie, svoistva, mekhanizmy deistviya (Phenolic Antioxidants in Biology and Medicine: Structure, Properties, and Action Mechanisms), Saarbrücken: LAP LAMBERT Academic, 2012.Google Scholar
  5. 5.
    Oxidative Stress and Diseases, Lushchak, V.I. and Gospodaryov, D.V., Eds., Rijeka: InTech, 2012.Google Scholar
  6. 6.
    Zenkov, N.K., Lankin, V.Z., and Men’shchikova, E.B., Okislitel’nyi stress. Biokhimicheskii i patofiziologicheskii aspekty (Oxidative Stress: Biochemical and Pathophysiological Aspects), Moscow: Nauka, 2001.Google Scholar
  7. 7.
    Principles of Free Radical Biomedicine, Biochemistry Research Trends Series, Pantopoulos, K. and Schipper, H.M., Eds., New York: Nova Biomedical, 2011, vol. 1.Google Scholar
  8. 8.
    Winterbourn, C.C., Nat. Chem. Biol., 2008, vol. 4, no. 5, pp. 278–286.CrossRefGoogle Scholar
  9. 9.
    Ray, P.D., Huang, B.W. and Tsuji, Y., Cell Signaling, 2012, vol. 24, no. 5, pp. 981–990.CrossRefGoogle Scholar
  10. 10.
    Bartosz, G., Biochem. Pharmacol., 2009, vol. 77, no. 8, pp. 1303–1315.CrossRefGoogle Scholar
  11. 11.
    Segal, A.W., Annu. Rev. Immunol., 2005, vol. 23, pp. 197–223.CrossRefGoogle Scholar
  12. 12.
    Kagan, V.E., Bayir, H.A., Belikova, N.A., Kapralov, O., et al., Free Radicals Biol. Med., 2009, vol. 46, no. 11, pp. 1439–1453.CrossRefGoogle Scholar
  13. 13.
    Kagan, V.E., Borisenko, G.G., Tyurina, Y.Y., Tyurin, V.A., et al., Free Radicals Biol. Med., 2004, vol. 37, no. 12, pp. 1963–1985.CrossRefGoogle Scholar
  14. 14.
    Kagan, V.E. Tyurin, V.A., Jiang, J., Tyurina, Y.Y., et al., Nat. Chem. Biol., 2005, vol. 1, pp. 223–232.CrossRefGoogle Scholar
  15. 15.
    Proskurnina, E.V. and Vladimirov, Yu.A., Free radicals as participants in regulatory and pathological processes, in Fundamental’nye nauki–meditsine. Biofizicheskie meditsinskie tekhnologii (Fundamental Sciences for Medicine: Biophysical Medical Tehcnologies), Grigor’ev, A.I. and Vladimirov, Yu.A., Eds., Moscow: MAKS Press, 2015, vol. 1, pp. 38–71.Google Scholar
  16. 16.
    Krasnovskii, A.A., Jr., Biophysics (Moscow), 1994, vol. 39, no. 2, pp. 197–211.Google Scholar
  17. 17.
    Metelitsa, D.A., Aktiviatsiya kisloroda fermentnymi sistemami (Oxygen Activation by Enzymatic Systems), Moscow: Nauka, 1982.Google Scholar
  18. 18.
    Rubin, A.B., Biofizika: uchebnik dlya biologicheskikh spetsial’nostei vuzov. Kniga 2. Biofizika kletochnykh protsessov (Biophysics: Manual for Biological Specialties of higher Education Institutions, Book 2: Biophysics of Cellular Processes), Moscow: Vysshaya Shkola, 1987.Google Scholar
  19. 19.
    Boveris, A., Methods Enzymol., 1984, vol. 105, pp. 429–435.CrossRefGoogle Scholar
  20. 20.
    Pryor, W.A., Annu. Rev. Physiol., 1986, vol. 48, pp. 657–667.CrossRefGoogle Scholar
  21. 21.
    Elchuri, S., Oberley, T.D., Qi, W., Eisenstein, R.S., et al., Oncogene, 2005, vol. 24, no. 3, pp. 367–380.CrossRefGoogle Scholar
  22. 22.
    Muller, F.L., Song, W., Liu, Y., Chaudhuri, A., et al., Free Radicals Biol. Med., 2006, vol. 40, pp. 1993–2004.CrossRefGoogle Scholar
  23. 23.
    Li, Y., Huang, T.T., Carlson, E.J., Melov, S., et al., Nat. Genet., 1995, vol. 11, no. 4, pp. 376–381.CrossRefGoogle Scholar
  24. 24.
    Hayyan, M., Hashim, M.A., and Al-Nashef, I.M., Chem. Rev., 2016, vol. 116, no. 5, pp. 3029–3085.CrossRefGoogle Scholar
  25. 25.
    Tainer, J.A., Getzoff, E.D., Richardson, J.S., and Richardson, D.C., Nature, 1983, vol. 306, no. 5940, pp. 284–287.CrossRefGoogle Scholar
  26. 26.
    McCord, J.M. and Fridovich, I., Free Radicals Biol. Med., 1988, vol. 5, nos. 5–6, pp. 363–369.CrossRefGoogle Scholar
  27. 27.
    Borgstahl, G.E., Parge, H.E., Hickey, M.J., Beyer, W.F., et al., Cell, 1992, vol. 71, no. 1, pp. 107–118.CrossRefGoogle Scholar
  28. 28.
    Barondeau, D.P., Kassmann, C.J., Bruns, C.K., Tainer, J.A., et al., Biochemistry, 2004, vol. 43, no. 25, pp. 8038–8047.CrossRefGoogle Scholar
  29. 29.
    Alscher, R.G., Erturk, N., and Heath, L.S., J. Exp. Bot., 2002, vol. 53, no. 372, pp. 1331–1341.CrossRefGoogle Scholar
  30. 30.
    Raychaudhuri, S.S. and Deng, X.W., Bot. Rev., 2008, vol. 66, no. 1, pp. 89–98.CrossRefGoogle Scholar
  31. 31.
    Chance, B. and Maehly, A.C., Methods Enzymol., 1955, vol. 2, pp. 764–775.CrossRefGoogle Scholar
  32. 32.
    Vainshtein, B.K., Melik-Adamyan, W.R., Barynin, V.V., Vagin, A.A., et al., Nature, 1981, vol. 293, no. 5831, pp. 411–412.CrossRefGoogle Scholar
  33. 33.
    Fita, I. and Rossmann, M.G., J. Mol. Biol., 1985, vol. 185, no. 1, pp. 21–37.CrossRefGoogle Scholar
  34. 34.
    Meister, A., J. Biol. Chem., 1988, vol. 263, no. 33, pp. 17205–17208.Google Scholar
  35. 35.
    Mills, G.C., J. Biol. Chem., 1957, vol. 229, no. 1, pp. 189–197.Google Scholar
  36. 36.
    Krauth-Siegel, R.L., Saleh, M., Untucht-Grau, R., Schirmer, R.H., et al., Eur. J. Biochem., 1982, vol. 121, no. 2, pp. 259–267.CrossRefGoogle Scholar
  37. 37.
    Sies, H., Free Radicals Biol. Med., 1999, vol. 27, nos. 9–10, pp. 916–921.CrossRefGoogle Scholar
  38. 38.
    Lu, S.C., FASEB J., 1999, vol. 13, no. 10, pp. 1169–1183.CrossRefGoogle Scholar
  39. 39.
    Fernandes, A.P. and Holmgren, A., Antioxid. Redox Signaling, 2004, vol. 6, no. 1, pp. 63–74.CrossRefGoogle Scholar
  40. 40.
    Holmgren, A., J. Biol. Chem., 1989, vol. 264, no. 24, pp. 13963–13966.Google Scholar
  41. 41.
    Rush, G.F., Gorski, J.R., Ripple, M.G., Sowinski, J., et al., Toxicol. Appl. Pharmacol., 1985, vol. 78, no. 3, pp. 473–483.CrossRefGoogle Scholar
  42. 42.
    Ogawa, K., Suzuki, K., Okutsu, M., Yamazaki, K., et al., Immun. Ageing, 2008, vol. 5, pp. 13-1–13-8.CrossRefGoogle Scholar
  43. 43.
    Rhee, S., Chae, H., and Kim, K., Free Radicals Biol. Med., 2005, vol. 38, no. 12, pp. 1543–1552.CrossRefGoogle Scholar
  44. 44.
    Claiborne, A., Yeh, J., Mallett, T., Luba, J., et al., Biochemistry, 1999, vol. 38, no. 47, pp. 15407–15416.CrossRefGoogle Scholar
  45. 45.
    Jonsson, T.J. and Lowther, W.T., Subcell. Biochem., 2007, vol. 44, pp. 115–141.CrossRefGoogle Scholar
  46. 46.
    Budanov, A.V., Sablina, A.A., Feinstein, E., Koonin, E.V., et al., Science, 2003, vol. 304, no. 5670, pp. 596–600.CrossRefGoogle Scholar
  47. 47.
    Ro, S.-H., Nam, M., Jang, I., Park, H.-W., et al., Proc. Natl. Acad. Sci. U.S.A., 2014, vol. 111, no. 21, pp. 7849–7854.CrossRefGoogle Scholar
  48. 48.
    Arnér, E.S. and Holmgren, A., Eur. J. Biochem., 2000, vol. 267, no. 20, pp. 6102–6109.CrossRefGoogle Scholar
  49. 49.
    Shakhmardanova, S.A., Gulevskaya, O.N., Seletskaya, V.V., Zelenskaya, A.V., et al., Zh. Fundam. Med. Biol., 2016, no. 3, pp. 4–5.Google Scholar
  50. 50.
    Morel, Y. and Barouki, R., Biochem. J., 1999, vol. 342, pp. 481–496.CrossRefGoogle Scholar
  51. 51.
    Halliwell, B., Lancet, 2000, vol. 355, no. 9210, pp. 1179–1180.CrossRefGoogle Scholar
  52. 52.
    Zaitsev, V.G., Ostrovskii, O.V., and Zakrevskii, V.I., Eksp. Klin. Farmakol., 2003, vol. 66, no. 4, pp. 66–70.Google Scholar
  53. 53.
    Vattem, D.A., Ghaedian, R., and Shetty, K., Asia Pac. J. Clin. Nutr., 2005, vol. 14, no. 2, pp. 120–130.Google Scholar
  54. 54.
    Walker, R.B. and Everette, J.D., J. Agric. Food Chem., 2009, vol. 57, no. 4, pp. 1156–1161.CrossRefGoogle Scholar
  55. 55.
    Roy, M.K., Koide, M., Rao, T.P., Okubo, T., et al., Int. J. Food Sci. Nutr., 2010, vol. 61, no. 2, pp. 109–124.CrossRefGoogle Scholar
  56. 56.
    Pulido, R., Bravo, L., and Saura-Calixto, F., J. Agric. Food Chem., 2000, vol. 48, no. 8, pp. 3396–3402.CrossRefGoogle Scholar
  57. 57.
    Meyer, A.S., Yi, O.S., Pearson, D.A., Waterhouse, A.L., et al., J. Agric. Food Chem., 1997, vol. 45, no. 5, pp. 1638–1643.CrossRefGoogle Scholar
  58. 58.
    Nijveldt, R.J., van Nood, E., van Hoorn, D.E.C., Boelens, P.G., et al., Am. J. Clin. Nutr., 2001, vol. 74, pp. 418–425.CrossRefGoogle Scholar
  59. 59.
    Ross, J.A. and Kasum, C.M., Annu. Rev. Nutr., 2002, vol. 22, pp. 19–34.CrossRefGoogle Scholar
  60. 60.
    Middleton, E., Jr., Kandaswami, C., and Theoharides, T.C., Pharmacol. Rev., 2000, vol. 52, no. 4, pp. 673–751.Google Scholar
  61. 61.
    Soobrattee, M.A., Neergheen, V.S., Luximon-Ramma, A., Aruoma, O.I., et al., Mutat. Res., 2005, vol. 579, nos. 1–2, pp. 200–213.CrossRefGoogle Scholar
  62. 62.
    Bors, W., Michel, C., and Saran, M., Methods Enzymol., 1994, vol. 234, pp. 420–429.CrossRefGoogle Scholar
  63. 63.
    Heim, K.E., Tagliaferro, A.R., and Bobilya, D.J., J. Nutr. Biochem., 2002, vol. 13, pp. 572–584.CrossRefGoogle Scholar
  64. 64.
    van Acker, S.A., de Groot, M.J., van den Berg, D.J., Tromp, M.N., et al., Chem. Res. Toxicol., 1996, vol. 9, pp. 1305–1312.CrossRefGoogle Scholar
  65. 65.
    Pietta, P.G., J. Nat. Prod., 2000, vol. 63, pp. 1035–1042.CrossRefGoogle Scholar
  66. 66.
    Afanas’ev, I.B., Dorozhko, A.I., Brodskii, A.V., Kostyuk, V.A., et al., Biochem. Pharmacol., 1989, vol. 38, no. 11, pp. 1763–1769.CrossRefGoogle Scholar
  67. 67.
    Cowan, M.M., Clin. Microbiol. Rev., 1999, vol. 12, no. 4, pp. 564–582.MathSciNetCrossRefGoogle Scholar
  68. 68.
    Cushnie, T.P.T., Hamilton, V.E.S., and Lamb, A.J., Microbiol. Res., 2003, vol. 158, pp. 281–289.CrossRefGoogle Scholar
  69. 69.
    Cushnie, T.P.T. and Lamb, A.J., Int. J. Antimicrob. Agents, 2005, vol. 26, no. 5, pp. 343–356.CrossRefGoogle Scholar
  70. 70.
    Kim, H.P., Son, K.H., Chang, H.W., and Kang, S.S., J. Pharmacol. Sci., 2004, vol. 96, pp. 229–245.CrossRefGoogle Scholar
  71. 71.
    Azarova, O.V. and Galaktionova, L.P., Khim. Rastit. Syr’ya, 2012, no. 4, pp. 61–78.Google Scholar
  72. 72.
    Belitskii, G.A., Kirsanov, K.I., Lesovaya, E.A., and Yakubovskaya, M.G., Usp. Mol. Onkol., 2014, vol. 1, no. 1, pp. 56–68.Google Scholar
  73. 73.
    Vladimirov, Y.A., Free radicals in cell life: two sides of the same coin, in Oxidative Stress at Molecular, Cellular and Organ Levels, Johnson, P. and Boldyrev, A.A., Eds., Trivandrum: Research Signpost, 2002, pp. 13–43.Google Scholar
  74. 74.
    Vladimirov, Yu.A., Demin, E.M., Proskurnina, E.V., and Osipov, A.N., Biochemistry (Moscow) Suppl. Ser. A: Membr. Cell Biol., 2009, vol. 3, no. 4, pp. 467–477.CrossRefGoogle Scholar
  75. 75.
    Vladimirov, Yu.A., Proskurnina, E.V., Izmailov, D.Yu., Novikov, A.A., et al., Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 998–1005.CrossRefGoogle Scholar
  76. 76.
    Vladimirov, Yu.A., Proskurnina, E.V., Izmailov, D.Yu., Novikov, A.A., et al., Biochemistry (Moscow), 2006, vol. 71, no. 9, pp. 989–997.CrossRefGoogle Scholar
  77. 77.
    Vladimirov, Yu.A., Nol, Y.T., and Volkov, V.V., Crystallogr. Rep., 2011, vol. 56, no. 4, pp. 553–559.CrossRefGoogle Scholar
  78. 78.
    Belikova, N.A., Vladimirov, Y.A., Osipov, A.N., Kapralov, A.A., et al., Biochemistry (Moscow), 2006, vol. 45, no. 15, pp. 4998–5009.CrossRefGoogle Scholar
  79. 79.
    Kerr, J.F., Wyllie, A.H., and Currie, A.R., Br. J. Cancer, 1972, vol. 26, no. 4, pp. 239–257.CrossRefGoogle Scholar
  80. 80.
    Zenkov, N.K., Men’shchikova, E.B., Vol’skii, N.N., and Kozlov, V.A., Usp. Sovrem. Biol., 1999, vol. 119, no. 5, pp. 440–450.Google Scholar
  81. 81.
    Hengartner, M.O., Nature, 2000, vol. 407, pp. 770–776.CrossRefGoogle Scholar
  82. 82.
    Levine, I.N., Molecular Spectroscopy, New York: Wiley, 1975.Google Scholar
  83. 83.
    Likhtenshtein, G.I., Metod spinovykh metok v molekulyarnnoi biologii (Use of a Spin Labeling Method in Molecular Biology), Moscow: Nauka, 1974.Google Scholar
  84. 84.
    Ershov, B.A., Spektroskopiya YaMR v organicheskoi khimii. Uchebnoe posobie dlya vuzov (NMR Spectroscopy in Organic Chemistry: Manual for Higher Education Institutions), St. Petersburg: S.-Peterb. Gos. Univ., 1995.Google Scholar
  85. 85.
    Gabuda, S.P. and Rzhavin, A.F., Yadernyi magnitnyi rezonans v kristallogidratakh i gidratirovannykh belkakh (NMR in Crystalline Hydrates and Hydrated Proteins), Novosibirsk: Nauka, 1978.Google Scholar
  86. 86.
    Yashroy, R.C., J. Biosci., 1990, vol. 15, no. 4, pp. 281–288.CrossRefGoogle Scholar
  87. 87.
    Caldwell, R.L. and Caprioli, R.M., Mol. Cell Proteomics, 2005, vol. 4, no. 4, pp. 394–401.CrossRefGoogle Scholar
  88. 88.
    McDonnell, L.A. and Heeren, R.M., Mass Spectrom. Rev., 2007, vol. 26, no. 4, pp. 606–643.CrossRefGoogle Scholar
  89. 89.
    Vladimirov, Yu.A., Sorosovskii Obraz. Zh., 2000, vol. 6, no. 12, pp. 13–19.Google Scholar
  90. 90.
    Vladimirov, Yu.A. and Archakov, A.I., Perekisnoe okislenie lipidov v biologicheskikh membranakh (Lipid Peroxidation in Biological Membranes), Moscow: Nauka, 1972.Google Scholar
  91. 91.
    Vladimirov, Yu.A. and Proskurina, E.V., Usp. Biol. Khim., 2009, vol. 49, pp. 341–388.Google Scholar
  92. 92.
    Mavridou, D.A., Ferguson, S.J., and Stevens, J.M., IUBMB Life, 2013, vol. 65, no. 3, pp. 209–216.CrossRefGoogle Scholar
  93. 93.
    Ow, Y.P., Green, D.R., Hao, Z., and Mak, T.W., Nat. Rev. Mol. Cell Biol., 2008, vol. 9, no. 7, pp. 532–542.CrossRefGoogle Scholar
  94. 94.
    Liu, X., Kim, C.N., Yang, J., Jemmerson, R., and Wang, X., Cell, 1996, vol. 86, no. 1, pp. 147–157.CrossRefGoogle Scholar
  95. 95.
    Zhivotovsky, B., Orrenius, S., Brustugun, O.T., and Døskeland, S.O., Nature, 1998, vol. 391, no. 6666, pp. 449–450.CrossRefGoogle Scholar
  96. 96.
    Biokhimiya. Uchebnik dlya vuzov (Biochemistry: Manual for Higher Education Institutions), Severin, E.S., Ed., Moscow: GEOTAR-Media, 2004.Google Scholar
  97. 97.
    Schlame, M., J. Lipid Res., 2008, vol. 49, no. 8, pp. 1607–1620.CrossRefGoogle Scholar
  98. 98.
    Schlame, M., Brody, S., and Hostetler, K.Y., Eur. J. Biochem., 1993, vol. 212, no. 3, pp. 727–733.CrossRefGoogle Scholar
  99. 99.
    Murray, R.K., Granner, D.K., Mayes, P.A., and Rodwell, V.W., Harpers Illustrated Biochemistry (Lange Medical Book), New York, NY: McGraw-Hill, 1993.Google Scholar
  100. 100.
    Koolman, J. and Röhm, K.-H., Taschenatlas der Biochemie, Stuttgart: Georg Thieme Verlag, 1994.Google Scholar
  101. 101.
    Bykov, V.L., Tsitologiya i obshchaya gistologiya (Cytology and General Histology), St. Petersburg: SOTIS, 2002.Google Scholar
  102. 102.
    Gistologiya, embriologiya, tsitologiya: uchebnik (Histology, Embryology, and Cytology: Manual), Afanas’ev, Yu.I. and Yurina, N.A., Eds., Moscow: GEOTAR-Media, 2012, 6th ed.Google Scholar
  103. 103.
    Vikulina, A.S., Alekseev, A.V., Proskurnina, E.V., and Vladimirov, Y.A., Biochemistry (Moscow), 2015, vol. 80, no. 10, pp. 1298–1302.CrossRefGoogle Scholar
  104. 104.
    Vladimirov, Y.A., Proskurnina, E.V., and Alekseev, A.V., Biochemistry (Moscow), 2013, vol. 78, no. 10, pp. 1086–1097.CrossRefGoogle Scholar
  105. 105.
    Kapralov, A.A., Yanamala, N., Tyurina, Y.Y., Castro, L., et al., Biochim. Biophys. Acta, 2011, vol. 1808, no. 9, pp. 2147–2155.CrossRefGoogle Scholar
  106. 106.
    Basova, L.V., Kurnikov, I.V., Wang, L., Ritov, V.B., et al., Biochemistry, 2007, vol. 46, no. 11, pp. 3423–3434.CrossRefGoogle Scholar
  107. 107.
    Kagan, V.E. Chu, C.T., Tyurina, Y.Y., Cheikhi, A., et al., Chem. Phys. Lipids, 2014, vol. 179, pp. 64–69.CrossRefGoogle Scholar
  108. 108.
    Ott, M., Robertson, J., Gogvadze, V., Zhivotovsky, B., et al., Proc. Natl. Acad. Sci. U.S.A., 2002, vol. 99, no. 3, pp. 1259–1263.CrossRefGoogle Scholar
  109. 109.
    Pop, C. and Salvesen, G.S., J. Biol. Chem., 2009, vol. 284, no. 33, pp. 21777–21781.CrossRefGoogle Scholar
  110. 110.
    Hanks, S.K., Quinn, A.M., and Hunter, T., Science, 1988, vol. 241, no. 4861, pp. 42–52.CrossRefGoogle Scholar
  111. 111.
    Hunter, T., Curr. Opin. Cell Biol., 2009, vol. 21, no. 2, pp. 140–146.CrossRefGoogle Scholar
  112. 112.
    Hunter, T. and Eckhart, W., Cell, 2004, vol. 116, suppl. 2, pp. S35–S39.Google Scholar
  113. 113.
    Pecina, P., Borisenko, G.G., Belikova, N.A., Tyurina, Y.Y., et al., Biochemistry, 2010, vol. 49, no. 31, pp. 6705–6714.CrossRefGoogle Scholar
  114. 114.
    Belikova, N.A., Tyurina, Y.Y., Borisenko, G., Tyurin, V., et al., J. Am Chem. Soc., 2009, vol. 131, no. 32, pp. 11288–11289.CrossRefGoogle Scholar
  115. 115.
    Petrosillo, G., Ruggiero, F.M., and Paradies, G., FASEB J., 2003, vol. 17, no. 15, pp. 2202–2208.CrossRefGoogle Scholar
  116. 116.
    Samhann-Arias, A.K., Tyurina, Y.Y. and Kagan, V.E., J. Clin. Biochem. Nutr., 2011, vol. 48, no. 1, pp. 91–95.CrossRefGoogle Scholar
  117. 117.
    Kagan, V.E., Serbinova, E.A., Forte, T., Scita, G., et al., J. Lipid Res., 1992, vol. 33, pp. 385–397.Google Scholar
  118. 118.
    Atkinson, J., Harroun, T., Wassall, S.R., Stillwell, W., et al., Mol. Nutr. Food Res., 2010, vol. 54, pp. 641–651.CrossRefGoogle Scholar
  119. 119.
    Niki, E. and Noguchi, N., Acc. Chem. Res., 2004, vol. 37, pp. 45–51.CrossRefGoogle Scholar
  120. 120.
    Kagan, V.E., Serbinova, E.A., and Packer, L., Arch. Biochem. Biophys., 1990, vol. 282, pp. 221–225.CrossRefGoogle Scholar
  121. 121.
    Lucarini, M. and Pedulli, G.F., Overview of antioxidant activity of vitamin E, in The Encyclopedia of Vitamin E, Preedy, V.R. and Watson, R.R., Eds., Wallingford: CABI, 2007, pp. 3–10.Google Scholar
  122. 122.
    Mukai, K., Itoh, S., and Morimoto, H., J. Biol. Chem., 1992, vol. 267, no. 31, pp. 22277–22281.Google Scholar
  123. 123.
    Nagaoka, S.-I., Inoue, M., Nishioka, C., Nishioku, Y., et al., J. Phys. Chem. B, 2000, vol. 104, no. 4, pp. 856–862.CrossRefGoogle Scholar
  124. 124.
    Demin, E.M., Proskurnina, E.V., and Vladimirov, Yu.A., Moscow Univ. Chem. Bull., 2008, vol. 63, no. 5, pp. 297–302.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. Yu. Kanarovskii
    • 1
  • O. V. Yaltychenko
    • 1
  • N. N. Gorinchoy
    • 2
  1. 1.Institute of Applied PhysicsChisinauRepublic of Moldova
  2. 2.Institute of ChemistryChisinauRepublic of Moldova

Personalised recommendations