Advertisement

Surface Engineering and Applied Electrochemistry

, Volume 54, Issue 5, pp 498–507 | Cite as

Berry Leaves Extract as Green Effective Corrosion Inhibitor for Cu in Nitric Acid Solutions

  • A. S. FoudaEmail author
  • E. Abdel Haleem
Article
  • 11 Downloads

Abstract

The corrosion of Cu in 2 M HNO3 in the presence of berry leaf extract (BLE) has been studied utilizing electrochemical impedance spectroscopy (EIS), potentiodynamic polarization (PP), electrochemical frequency modulation (EFM), and weight loss techniques. Polarization studies demonstrated that this extract acts as a mixed-type inhibitor. The inhibition efficiency (IE) of this extract has been found to vary with the concentration of the extract and the temperature and reached 90.1% at 300 ppm and 45°C. The adsorption of this extract on the surface of Cu from the corrosive environment has been found to obey the Temkin adsorption isotherm. The thermodynamic parameters of Cu corrosion in 2 M HNO3 were calculated and discussed. The surface morphology of the Cu surface was examined using different techniques. The Fouriertransform infrared spectroscopy (FTIR) results showed that the inhibition mechanism was via the absorption process, through the functional groups present in the extract molecules.

Keywords

Cu corrosion HNO3 BLE EIS EFM Temkin isotherm 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Elmorsi, M.A. and Hassaneim, A.M., Corros. Sci., 1999, vol. 41, pp. 2337–2352.CrossRefGoogle Scholar
  2. 2.
    Zucchi, F., Grassi, V., Frignani, A., and Trabanelli, G., Corros. Sci., 2004, vol. 46, pp. 2853–2865.CrossRefGoogle Scholar
  3. 3.
    Fouda, A.S. and Wahed, H.A., Arab. J. Chem., 2011, vol. 9, pp. S1–S940.Google Scholar
  4. 4.
    Khaled, K.F. and Amin Mohammed, A., Corros. Sci., 2009, vol. 51, pp. 2098–2106.CrossRefGoogle Scholar
  5. 5.
    Quraishi, M.A. and Jamal, D., Corrosion, 2006, vol. 56, pp. 156–160.CrossRefGoogle Scholar
  6. 6.
    Vashi, R.T., Bhajiwala, H.M. and Desai, S.A., Pharma Chem., 2011, vol. 3, no. 2, pp. 80–87.Google Scholar
  7. 7.
    Vashi, R.T., Bhajiwala, H.M. and Desai, S.A., E-J. Chem., 2010, vol. 7, no. 2, pp. 665–668.CrossRefGoogle Scholar
  8. 8.
    Migahed M., Mohamed H.M. and AI-Sabagh A.M., Mater. Chem. Phys., 2003, vol. 80, pp. 169–175.CrossRefGoogle Scholar
  9. 9.
    Tansuğ, G., Tüken, T., Giray, E.S., Fındıkkıran, G., et al., Corros. Sci., 2014, vol. 84, pp. 21–29.CrossRefGoogle Scholar
  10. 10.
    Vashi, R.T. and Desai, P.S., Anti-Corros. Methods Mater., 2011, vol. 58, no. 2, pp. 70–75.CrossRefGoogle Scholar
  11. 11.
    Popova, A., Sokolova, E., Raicheva, S. and Christov, M., Corros. Sci., 2003, vol. 45, pp. 33–58.CrossRefGoogle Scholar
  12. 12.
    Abdel-Gaber, M., Abd-El-Nabey, B.A., Sidahmed, I.M., El-Zayady, A.M., et al., Corros. Sci., 2006, vol. 48, pp. 2765–2779.CrossRefGoogle Scholar
  13. 13.
    Chauhan, L.R. and Gunasekaran, G., Corros. Sci., 2007, vol. 49, pp. 1143–1161.CrossRefGoogle Scholar
  14. 14.
    Ma, H., Chen, S., Niu, L., Zhao, S., et al., J. Appl. Electrochem., 2002, vol. 32, pp. 65–72.CrossRefGoogle Scholar
  15. 15.
    Bosch, R.W., Hubrecht, J., Bogaerts, W.F., and Syrett, B.C., Corrosion, 2001, vol. 57, pp. 60–70.CrossRefGoogle Scholar
  16. 16.
    Abdel-Rehim, S.S., Khaled, K.F., and Abd-Elshafi, N.S., Electrochim. Acta, 2006, vol. 51, pp. 3269–3277.CrossRefGoogle Scholar
  17. 17.
    Fouda, A.S., Shalabi, K., Nofal, A.M. and El-Zekred, M.A., Chem. Sci. Trans., 2018, vol. 7, no. 1, pp. 101–111.Google Scholar
  18. 18.
    Yurt, A., Bereket, G., Kivrak, A., Balaban, A., et al., J. Appl. Electrochem., 2005, vol. 35, pp. 1025–1032.CrossRefGoogle Scholar
  19. 19.
    Bentiss, F., Traisnel, M., and Lagrenee, M., Corros. Sci., 2000, vol. 42, pp. 127–146.CrossRefGoogle Scholar
  20. 20.
    Arellanes-Lozada, P., Olivares-Xometl, O., Guzmán-Lucero, D., Likhanova N.V., et al., Materials, 2014, vol. 7, no. 8, pp. 5711–5734.CrossRefGoogle Scholar
  21. 21.
    Fouda, A.S., Attia, A.A. and Negm, A.A., J. Metall., 2014, no. 5, pp. 1–15.CrossRefGoogle Scholar
  22. 22.
    Riggs, L.O., Jr., and Hurd, T.J., Corrosion, 1967, vol. 23, pp. 252–260.CrossRefGoogle Scholar
  23. 23.
    Şafak, S., Duran, B., Yurt, A., and Turkoglu, G., Corros. Sci., 2012, vol. 54, pp. 251–259.CrossRefGoogle Scholar
  24. 24.
    Comprehensive Treatise of Electrochemistry, Vol. 2: Electrochemical Processing, Bockris, J.O’M., Conway, B.E., Yeager, E., and White, R.E., Eds., New York: Springer-Verlag, 1981.Google Scholar
  25. 25.
    El-Achouri, M., Kertit, S., Gouttaya, H.M., Nciri, B., et al., Prog. Org. Coat., 2001, vol. 43, pp. 267–272.CrossRefGoogle Scholar
  26. 26.
    Macdonald, J.R. and Johanson, W.B., in Impedance Spectroscopy: Theory, Experiment, and Applications, Macdonald, J.R., Ed., New York: Wiley, 1987, ch. 1, p. 1.Google Scholar
  27. 27.
    Mertens, S.F., Xhoffer, C., Decooman, B.C., and Emmerman, E.T., Corrosion, 1997, vol. 53, pp. 381–387.CrossRefGoogle Scholar
  28. 28.
    Lagrenée, M., Mernari, B., Bouanis, M., Traisne, M., et al., Corros. Sci., 2002, vol. 44, pp. 573–588.CrossRefGoogle Scholar
  29. 29.
    Bentiss, F., Lagrenee, M. and Traisne, M., Corrosion, 2000, vol. 56, pp. 733–742.CrossRefGoogle Scholar
  30. 30.
    Reis, F.M., Melo, H.G., and Costa, I., Electrochim. Acta, 2006, vol. 51, no. 17, pp. 1780–1788.CrossRefGoogle Scholar
  31. 31.
    Ebenso, E.E., Eddy, N.O., and Odiongenyi, A.O., Pure Appl. Chem., 2008, vol. 4, pp. 107–115.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Department of Chemistry, Faculty of ScienceEl-Mansoura UniversityMansouraEgypt
  2. 2.Department of Basic ScienceHigher Institute of Engineering and Technology in El-ArishNorth SinaiEgypt

Personalised recommendations