Advertisement

Influence of Nickel Sulfate Additives to Electrolytes Subjected to Microarc Oxidation on the Structure, Composition, and Properties of Coatings Formed on Titanium

  • N. L. Bogdashkina
  • M. V. Gerasimov
  • R. Kh. Zalavutdinov
  • I. V. Kasatkina
  • B. L. Krit
  • V. B. Lyudin
  • I. D. Fedichkin
  • A. I. Shcherbakov
  • A. V. Apelfeld
Article
  • 22 Downloads

Abstract

The influence of nickel sulfate additives to acid and basic electrolytes for microarc oxidation on the structure, composition, and properties of coatings formed on VT1-0 titanium were studied to produce poorly soluble titanium anodes. We established the possibility of incorporating nickel (nickel oxide) into the composition of coatings. X-ray diffraction analysis showed that the coatings contained nickel oxide β-NiO with a cubic lattice, TiO2 in the form of rutile, and SiO2 in the form of high-temperature β-cristobalite. The maximum thickness and nickel content in the surface layer and the minimum values of both the anodic dissolution currents and the electrical strength were obtained for the coatings formed in silicate-alkali (3 g/L KOH + 4.5 g/L Na2SiO3) electrolyte with the addition of 1 g/L of nickel sulfate NiSO4.

Keywords

microarc oxidation titanium MAO coatings nickel sulfate structure composition anodic dissolution currents thickness electrical strength poorly soluble titanium anodes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bairachnii, B.I., Kovaleva, A.A., Voronina, E.V., and Kovalenko, Yu.I., Visn. Nats. Tekh. Univ., KhPI, 2013, no. 64, pp. 8–12.Google Scholar
  2. 2.
    Damaskin, B.B., Petrii, O.A., and Tsirlina, G.A., Elektrokhimiya (Electrochemistry), Moscow: Khimiya, 2006.Google Scholar
  3. 3.
    Gaidukova, A.M., Brodskii, V.A., and Kolesnikov, V.A., Usp. Khim. Khim. Tekhnol., 2013, vol. 27, no. 7, pp. 11–17.Google Scholar
  4. 4.
    West, A., Solid State Chemistry and Its Applications, New York: Wiley, 1987.Google Scholar
  5. 5.
    Brusentsov, Yu.A. and Minaev, A.M., Osnovy fiziki i tekhnologii oksidnykh poluprovodnikov (Physics and Technology of Oxide Semiconductors), Tambov: Tambovsk. Gos. Tekh. Univ., 2002.Google Scholar
  6. 6.
    Sokolovskaya, E.M., Obshchaya khimiya (General Chemistry), Moscow: Mosk. Gos. Univ., 1989.Google Scholar
  7. 7.
    Pak, V.N., Formus, D.V., and Shilov, S.M., Russ. J. Gen. Chem., 2013, vol. 83, no. 4, pp. 633–635.CrossRefGoogle Scholar
  8. 8.
    Apelfeld, A.V., Belkin, P.N., Borisov, A.M., Vasin, V.A., et al., Sovrmennye tekhnologii modifikatsii poverkhnosti materialov i naneseniya zashchitnykh pokrytii. Tom 1. Mikrodugovoe oksidirovanie (Modern Technologies for Modification of Surface of Materials and Deposition of Protective Coatings, Vol. 1: Microarc Oxidation), Moscow: Renome, 2017.Google Scholar
  9. 9.
    Borisov, A.M., Krit, B.L., Lyudin, V.B., Morozova, N.V., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 1, pp. 50–78.CrossRefGoogle Scholar
  10. 10.
    Rudnev, V.S., Tyrina, L.M., Lukiyanchuk, I.V., Yarovaya, T.P., et al., Surf. Coat. Technol., 2011, vol. 206, pp. 417–424.CrossRefGoogle Scholar
  11. 11.
    Rogov, A.B., Slonova, A.I., and Shayapov, V.R., Appl. Surf. Sci., 2012, 261, pp. 647–652.Google Scholar
  12. 12.
    Lukiyanchuk, I.V., Rudnev, V.S., Chernykh, I.V., Malyshev, I.V., et al., Surf. Coat. Technol., 2013, vol. 231, pp. 433–438.CrossRefGoogle Scholar
  13. 13.
    Gerasimov, M.V., Zheltukhin, R.V., Zhukov, S.V., Zalavutdinov, R.Kh., et al., Korroz.: Mater., Zashch., 2014, no. 10, pp. 41–48.Google Scholar
  14. 14.
    Lukiyanchuk, I.V., Rudnev, V.S., Tyrina, L.M., and Chernykh, I.V., Appl. Surf. Sci., 2014, vol. 315, pp. 481–489.CrossRefGoogle Scholar
  15. 15.
    Lukiyanchuk, I.V., Chernykh, I.V., Rudnev, V.S., Tyrina, L.M., et al., Prot. Met. Phys. Chem. Surf., 2015, vol. 51, no. 3, pp. 448–457.CrossRefGoogle Scholar
  16. 16.
    Gerasimov, M.V., Bogdashkina, N.V., Zalavutdinov, R.Kh., Kasatkina, I.V., et al., Korroz.: Mater., Zashch., 2017, no. 2, pp. 33–36.Google Scholar
  17. 17.
    Khimicheskaya entsiklopediya (Chemical Encyclopedia), Moscow: Bol’shaya Rossiiskaya Entsiklopediya, 1992, vol. 3.Google Scholar
  18. 18.
    Apelfeld, A.V., Ashmarin, A.A., Borisov, A.M., Vinogradov, A.V., et al., Surf. Coat. Technol., 2017, vol. 328, pp. 513–517.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • N. L. Bogdashkina
    • 1
  • M. V. Gerasimov
    • 1
  • R. Kh. Zalavutdinov
    • 1
  • I. V. Kasatkina
    • 1
  • B. L. Krit
    • 2
  • V. B. Lyudin
    • 2
  • I. D. Fedichkin
    • 2
  • A. I. Shcherbakov
    • 1
  • A. V. Apelfeld
    • 2
  1. 1.Frumkin Institute of Physical Cheistry and ElectrochemistryRussian Academy of ScienceMoscowRussia
  2. 2.Moscow Aviation Institute (National Research University) (MAI)MoscowRussia

Personalised recommendations