Advertisement

Investigation on Microstructure, Wear Behavior and Microhardness of Al−Si/SiC Nanocomposite

  • E. Bahmani
  • V. Abouei
  • Y. Shajari
  • S. H. Razavi
  • O. Bayat
Article
  • 5 Downloads

Abstract

Aluminum matrix nano-composites have been widely used in various fields such as aerospace, automobile, and packing industries. In this study, the effect of nano-SiC content on the microst-ructure, wear resistance and micro-hardness of Al–Si/SiC nano-composite was investigated. In this regard, Al–Si matrix was reinforced by different amounts of nano-SiC: 0, 0.5, 1, 1.5, 3, 5, 10 wt %. The results showed that with increasing the nano-SiC weight ratio, nano-particles are agglomerated and unsuitable sintering increases the porosity, as pores and cavities. For more than 1.5% weight ratio of nano-SiC in the matrix, the wear resistance and the micro-hardness decreased. The results of the wear test, scanning electron microscopy, energy dispersive X-ray spectroscopy and worn surfaces showed that the dominant wear mechanism is controlled by nano-SiC contents. This study indicated that with adding nano-SiC particles more than the optimal content, wear resistance and micro-hardness of Al–Si/SiC nano-composite increased more than twice.

Keywords

nano composite wear rate wear resistance Al−Si/SiC 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Zhang, L., Xu, H., Wang, Z., Li, Q., et al., J. Alloys Compd., 2016, vol. 678, pp. 23–30.CrossRefGoogle Scholar
  2. 2.
    Pramanik, A., Trans. Nonferrous Met. Soc. China, 2016, vol. 26, pp. 348–358.CrossRefGoogle Scholar
  3. 3.
    Khadem, H., Nategh, S.A., and Yoozbashizadeh, S., J. Alloys Compd., 2011, vol. 509, pp. 2221–2226.CrossRefGoogle Scholar
  4. 4.
    Harichandran, R. and Selvakumar, N., Arch. Civ. Mech. Eng., 2016, vol. 16, pp. 147–158.CrossRefGoogle Scholar
  5. 5.
    Ram Prabhu, T., Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 20–31.CrossRefGoogle Scholar
  6. 6.
    Abdizadeh, H., Ashuri, M., Moghadam, P.T., Nouribahadory, A., et al., Mater. Des., 2011, vol. 32, pp. 4417–4423.CrossRefGoogle Scholar
  7. 7.
    Hu, Q., Zhao, H., and Li, F., Mater. Sci. Eng., A, 2016, vol. 667, pp. 251–260.CrossRefGoogle Scholar
  8. 8.
    Singh, J. and Chauhan, A., Ceram. Int., 2015, vol. 42, pp. 56–81.CrossRefGoogle Scholar
  9. 9.
    Rajeev, V.R., Dwivedi, D.K., and Jain, S.C., Mater. Des., 2010, vol. 31, pp. 4951–4959.CrossRefGoogle Scholar
  10. 10.
    Bensam Raj, J., Marimuthu, P., Prabhakar, M., and Anandakrishnan, V., Int. J. Adv. Des. Manuf. Technol., 2012, vol. 61, pp. 237–252.CrossRefGoogle Scholar
  11. 11.
    Chen, Z., Teng, J., Chen, G., Fu, D., et al., Wear, 2007, vol. 262, pp. 362–368.CrossRefGoogle Scholar
  12. 12.
    Terry, B. and Jones, G., Metal Matrix Composites, Oxford: Elsevier, 1990.Google Scholar
  13. 13.
    Wagih, A., Int. J. Adv. Eng. Sci., 2014, vol. 4, no. 2, pp. 1–7.Google Scholar
  14. 14.
    Razavi Tousi, S.S., Yazdani Rad, R., Salahi, E., Mobasherpour, I., et al., Powder Technol., 2009, vol. 192, pp. 346–351.Google Scholar
  15. 15.
    Fogagnolo, J.B., Robert, M.H., Ruiz-Navas, E.M., and Torralba, J.M. J. Mater. Sci., 2004, vol. 39, pp. 127–132.CrossRefGoogle Scholar
  16. 16.
    Fogagnolo, J.B., Velasco, F., Robert, M.H., and Torralba, J.M., Mater. Sci. Eng., A, 2003, vol. 342, pp. 131–143.CrossRefGoogle Scholar
  17. 17.
    Hesabi, Z.R., Simchi, A., and Reihani, S.M.S., Mater. Sci. Eng., A, 2006, vol. 428, pp. 159–168.CrossRefGoogle Scholar
  18. 18.
    Mahboob, H., Sajjadi, S.A., and Zebarjad, S.M., The Int. Conf. on MEMS and Nanotechnology, ICMN’08, May 13–15, 2008, Kuala Lumpur, 2008, pp. 240–245. http://citeseerx.ist.psu.edu/viewdoc/download?doi= 10.1.1.863.4269&rep=rep1&type=pdf.Google Scholar
  19. 19.
    Hao, S., Xie, J., Wang, A., and Fang, M., Mater. Trans., 2014, vol. 55, no. 5, pp. 750–753.CrossRefGoogle Scholar
  20. 20.
    Ram Prabhu, T., Arch. Civ. Mech. Eng., 2017, vol. 17, pp. 20–31.CrossRefGoogle Scholar
  21. 21.
    Jayaraman, K., Mulla, I., Chakravarthy, S.R., and Sarathi, R., 48th AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition, Orlando, 2010, pp. 1–7.Google Scholar
  22. 22.
    Taherzadeh Mousavian, R., Azari Khosroshahi, R., Yazdani, S., Brabazon, D., et al., Mater. Des., 2016, vol. 89, pp. 58–70.Google Scholar
  23. 23.
    Hassani, A., Bagherpour, E., and Qods, F., J. Alloys Compd., 2014, vol. 591, pp. 132–142.CrossRefGoogle Scholar
  24. 24.
    De Jonghe, L.C. and Rahaman, M.N., in Handbook of Advanced Ceramics: Materials, Applications, Processing and Properties, New York: Elsevier, 2003, vol. 1, ch. 4, pp. 187–264.Google Scholar
  25. 25.
    Mitrica, D. and Moldovan, P. U.P.B., Sci. Bull.-Politeh. Univ. Bucharest, Ser. B, 2012, vol. 74, no. 4, pp. 186–194.Google Scholar
  26. 26.
    Anandkumar, R., Almeida, A., Colaco, R., Vilar, R., et al., Surf. Coat. Technol., 2007, vol. 201, pp. 9497–9505.CrossRefGoogle Scholar
  27. 27.
    Abdel-Aal, H.A., Wear, 2003, vol. 254, pp. 884–900.CrossRefGoogle Scholar
  28. 28.
    Vogelsang, M., Arsenault, R.J., and Fisher, R.M., Metall. Trans. A, 1986, vol. 17, pp. 379–389.CrossRefGoogle Scholar
  29. 29.
    Tham, L.M. and Cheng, L., Acta Mater., 2001, vol. 49, pp. 3243–3253.CrossRefGoogle Scholar
  30. 30.
    Segurado, J., González, C., and Lorca, J., Acta Mater., 2003, vol. 51, pp. 2355–2369.CrossRefGoogle Scholar
  31. 31.
    Canakci, A. and Varol, T., Powder Technol., 2014, vol. 268, pp. 72–79.CrossRefGoogle Scholar
  32. 32.
    Kaur, K., Anant, R., and Pandey, O.P., Tribol. Lett., 2011, vol. 44, pp. 41–58.CrossRefGoogle Scholar
  33. 33.
    Rice, S.L., Nowotny, H., and Wayne, S.F., Wear, 1981, vol. 74, pp. 131–142.CrossRefGoogle Scholar
  34. 34.
    Suh Nam Pyo, Wear, 1977, vol. 44, no. 1, pp. 1–16.CrossRefGoogle Scholar
  35. 35.
    Jahanmir, S. and Suh, N.P., Wear, 1977, vol. 44, pp. 17–38.CrossRefGoogle Scholar
  36. 36.
    Sethuramiah, A. and Kumar, R., in Modeling of Chemical Wear, Amsterdam: Elsevier, 2016, ch. 3, pp. 41–68.Google Scholar
  37. 37.
    Rajmohan, T., Palanikumar, K., and Ranganathan, S., Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 2509–2517.CrossRefGoogle Scholar
  38. 38.
    Haghshenas, M., in Reference Module in Materials Science and Materials Engineering, Amsterdam: Elsevier, 2016, pp. 1–28.Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • E. Bahmani
    • 1
  • V. Abouei
    • 1
  • Y. Shajari
    • 1
  • S. H. Razavi
    • 2
  • O. Bayat
    • 3
  1. 1.Department of Materials Science and Engineering, Karaj BranchIslamic Azad UniversityKarajIran
  2. 2.School of Metallurgy and Materials EngineeringIran University of Science and TechnologyTehranIran
  3. 3.Department of Materials Science and EngineeringHamedan University of TechnologyHamedanIran

Personalised recommendations