Surface Engineering and Applied Electrochemistry

, Volume 52, Issue 5, pp 456–468 | Cite as

Direct surface relief formation in nanomultilayers based on chalcogenide glasses: A review



In this review the investigations of direct surface relief formations in nanomultilayers from chalcogenide glasses are summarized. Chalcogenide glasses are known to exhibit several photoinduced phenomena, both scalar and vectorial, which are connected with photoinduced structural transformations, defects creation, and atoms diffusion. Surface relief formation in chalcogenide glasses films has been intensively studied due to its applicability to reversibly form versatile patterns and diffractive optical elements. Both intensity and polarization holography have been employed to generate surface relief structures in chalcogenide glasses materials, including monolayers and multilayer structures. The research outlined here has not only led to better understanding of the material properties that affect the optical performance of chalcogenides structures, but also illustrated the momentum in the field that has led to the development of high-performance nanostructured devices.


chalcogenide glasses nanomultilayers direct surface relief formation scalar and polarization holography electron-beam recording optical anisotropy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trunov, M.L., Lytvyn, P.M., Nagy, P.M. and Dyachynska, O.M., Appl. Phys. Lett., 2010, vol. 96, p. 111908.CrossRefGoogle Scholar
  2. 2.
    Trunov, M.L., Lytvyn, P.M. and Dyachyns’ka, O.M., Appl. Phys. Lett., 2010, vol. 97, p. 031905.CrossRefGoogle Scholar
  3. 3.
    Trunov, M.L., Lytvyn, P.M., Yannopoulos, S.N., Szabo, I.A. and Kokenyesi, S., Appl. Phys. Lett., 2011, vol. 99, p. 051906.CrossRefGoogle Scholar
  4. 4.
    Voynarovych, I., Schroeter, S., Poehlmann, R., and Vlcek, M., J. Phys. D: Appl. Phys., 2015, vol. 48, p. 265106.CrossRefGoogle Scholar
  5. 5.
    Kaganovskii, Yu., Beke, D.L., Charnovych, S.S., Kokenyesi, S. and Trunov, M.L., J. Appl. Phys., 2011, vol. 110, p. 063502.CrossRefGoogle Scholar
  6. 6.
    Kaganovskii, Yu., Trunov, M.L., Beke, D.L. and Kokenyesi, S., Mater. Lett., 2012, vol. 66, p. 159.CrossRefGoogle Scholar
  7. 7.
    Feigel, A., Veinger, M., Sfez, B., Arsh, A., Klebanov, M., and Lyubin, V., Appl. Phys. Lett., 2003, vol. 83, p. 4480.CrossRefGoogle Scholar
  8. 8.
    Wong, S., Deubel, M., Perez-Willard, F., John, S., Ozin, G.A., Wegener, M., and von Freymann, G., Adv. Mater., 2006, vol. 18, p. 265.CrossRefGoogle Scholar
  9. 9.
    Tanaka, K., Chalcogenide glasses, in Encyclopedia of Materials: Science and Technology, Buschow, K.H.J., Eds., Amsterdam: Elsevier, 2001, pp. 1123–1131.Google Scholar
  10. 10.
    Tanaka, K., J. Non-Cryst. Solids, 2003, vol. 21, pp. 326–327.Google Scholar
  11. 11.
    Kurioz, Y., Klebanov, M., Lyubin, V., Eisenberg, N., et al., Mol. Cryst. Liq. Cryst., 2008, vol. 489, pp. 94–104.CrossRefGoogle Scholar
  12. 12.
    Takats, V., Nemec, P., Miller, A.C., Jain, H., et al., Opt. Mater., 2010, vol. 32, pp. 677–679.CrossRefGoogle Scholar
  13. 13.
    Dikova, J., Vlaeva, I., Babeva, Tz., Yovcheva, T., et al., Opt. Laser Eng., 2012, vol. 50, pp. 838–843.CrossRefGoogle Scholar
  14. 14.
    Saito, I., Masuzawa, T., Kudo, Y., Pittner, S., et al., J. Non-Cryst. Solids, 2013, vol. 378, pp. 96–100.CrossRefGoogle Scholar
  15. 15.
    Kikineski, A., Mishak, A., Palyok, V., and Shiplyak, M., Nanostruct. Mater., 1999, vol. 12, pp. 417–420.CrossRefGoogle Scholar
  16. 16.
    Palyok, V., Mishak, A., Szabo, I., Beke, D.L., et al., Appl. Phys. A: Mater. Sci. Process., 1999, vol. 68, pp. 489–492.CrossRefGoogle Scholar
  17. 17.
    Popescu, M., Andries, A., Ciumas, V., Iovu, M., Sutov, S., and Tciuleanu, D., in Fizica Sticelor Calcogenice, Bucuresti, S., Ed., Chisinau Stiinta, 1996.Google Scholar
  18. 18.
    Kikineshi, A., in Proc. Int. Workshop on Physics and Technology of Thin Films (IWTF 2003), Tehran, Iran, February 22–March 6, 2003, Singapore World Sci., 2004, p. 548.Google Scholar
  19. 19.
    Lyubin, V., Klebanov, M., Bar, I., Rosenwaks, S., et al., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 1997, vol. 15, no. 3, p. 823.CrossRefGoogle Scholar
  20. 20.
    Indutnij, I.Z., Kostishin, M.T., Romanenko, P.F., and Stronskij, A.V., Infrared Res. Mater., 1991, vol. 19, p. 239.Google Scholar
  21. 21.
    Kolomiets, B.T. and Lyubin, V.M., Mater. Res. Bull., 1978, vol. 13, p. 1343.CrossRefGoogle Scholar
  22. 22.
    Trunov, M.L., JETP Lett., 2007, vol. 86, p. 313.CrossRefGoogle Scholar
  23. 23.
    Trunov, M.L., J. Phys. D: Appl. Phys., 2008, vol. 41, p. 074011.CrossRefGoogle Scholar
  24. 24.
    Trunov, M.L., Bilanich, V.S. and Dub, S.N., J. Non- Cryst. Solids, 2007, vol. 353, p. 1904.CrossRefGoogle Scholar
  25. 25.
    Fischer, M., Galstyan, T., Valee, R. and Saliminia, A., Synth. Met., 2002, vol. 127, p. 303.CrossRefGoogle Scholar
  26. 26.
    Ikeda, Y. and Shimakawa, K., J. Non-Cryst. Solids, 2004, vol. 338, p. 539.CrossRefGoogle Scholar
  27. 27.
    Hegedus, J., Kohary, K., Pettifor, D.G., Shimakava, K., and Kugler, S., Phys. Rev. Lett., 2005, vol. 95, no. 20, art. 206803.CrossRefGoogle Scholar
  28. 28.
    Palyok, V., Szabo, I.A., Beke, D.L. and Kikineshi, A., Appl. Phys. A: Mater. Sci. Process., 2002, vol. 74, p. 683.CrossRefGoogle Scholar
  29. 29.
    Kokenyesi, S., Ivan, I., Takats, V., Palinkas, J., et al., J. Non-Cryst. Solids, 2007, vol. 353, pp. 1470–1473.CrossRefGoogle Scholar
  30. 30.
    Ivan, I. and Kikineshi, A., J. Optoelectron. Adv. Mater., 2002, vol. 4, p. 743.Google Scholar
  31. 31.
    Ivan, I., Beke, D.L., Kokenyesi, S., Szabo, I.A., and Csik, A., J. Optoelectron. Adv. Mater., 2005, vol. 7, p. 1831.Google Scholar
  32. 32.
    Kikineshi, A., Malyovanik, M., Messaddeq, Y., Pinzenik, V., et al., J. Non-Cryst. Solids, 2004, vol. 561, pp. 338–340.Google Scholar
  33. 33.
    Kokenyesi, S., J. Optoelectron. Adv. Mater., 2006, vol. 8, p. 2093.Google Scholar
  34. 34.
    Takats, V., Vojnarovich, I., Pinzenik, V., Mojzes, I., Kokenyesi, S., and Sangunni, K.S., Chem. Solids, 2007, vol. 68, p. 943.CrossRefGoogle Scholar
  35. 35.
    Vinogradova, G.Z., Stekloobrazovanie i fazovye ravnovesiya v khal’kogenidnykh sistemakh. Dvoinye i troinye sistemy (Glass Formation and Phase Equilibrium in Chalcogenide Systems: Double and Triple Systems), Moscow Nauka, 1984.Google Scholar
  36. 36.
    Takats, V., Vojnarovich, I., Csarnovich, I., Csik, A., et al., J. Non-Cryst. Solids, 2009, vol. 355, pp. 1962–1965.CrossRefGoogle Scholar
  37. 37.
    Ionov, R. and Nesheva, D., Thin Solid Films, 1992, vol. 213, pp. 230–234.CrossRefGoogle Scholar
  38. 38.
    Malyovanik, M., Ivan, S., Csik, A., Langer, G., Beke, D.L., and Kokenyesi, S., Appl. Phys., 2003, vol. 93, p. 139.CrossRefGoogle Scholar
  39. 39.
    Abaskin, V., Achimova, E., Meshalkin, A., Prisacar, A., et al., Surf. Eng. Appl. Electrochem., 2016, vol. 52, no. 4, pp. 380–386.CrossRefGoogle Scholar
  40. 40.
    Naik, R., Adarsh, K.V., Ganesan, R., Sangunni, K.S., et al., J. Non-Cryst. Solids, 2009, vol. 355, pp. 1836–1839.CrossRefGoogle Scholar
  41. 41.
    Kikineshi, A., Palyok, V., Szabo, I.A., Shipljak, M., et al., J. Non-Cryst. Solids, 2003, vols. 326–327, pp. 484–488.CrossRefGoogle Scholar
  42. 42.
    Stronski, A., Achimova, E., Paiuk, A., Abaskin, V., et al., J. Non-Cryst. Solids, 2015, vol. 409, pp. 43–48.CrossRefGoogle Scholar
  43. 43.
    Trunov, M.L., Lytvyn, P.M., Nagy, P.M., and Dyachynska, O.M., Appl. Phys. Lett., 2010, vol. 96, p. 111908.CrossRefGoogle Scholar
  44. 44.
    Nikolova, L. and Ramanujam, P.S., Polarization Holography, Cambridge Cambridge Univ. Press, 2009.CrossRefGoogle Scholar
  45. 45.
    Zhdanov, V.G., Kolomiets, B.T., Lyubin, V.M. and Malinovskii, V.K., Phys. Status Solidi A, 1979, vol. 52, pp. 621–626.CrossRefGoogle Scholar
  46. 46.
    Tikhomirov, V.K., Adriaenssens, G.J. and Elliott, S.R., Phys. Rev. B, 1997, vol. 55, pp. R660–R663.Google Scholar
  47. 47.
    Lyubin, V.M. and Tikhomirov, V.K., J. Non-Cryst. Solids, 1989, vol. 114, pp. 133–135.CrossRefGoogle Scholar
  48. 48.
    Abdulhalim, I., Gelbaor, M., Klebanov, M., and Lyubin, V., Opt. Mater. Express, 2011, vol. 1, no. 7, pp. 1192–1201.CrossRefGoogle Scholar
  49. 49.
    Lyubin, V., Klebanov, M., Feigel, A., and Sfez, B., Thin Solid Films, 2004, vol. 459, pp. 183–186.CrossRefGoogle Scholar
  50. 50.
    Kwak, C.H., Kim, J.T. and Lee, S.S., Opt. Lett., 1988, vol. 13, pp. 437–439.CrossRefGoogle Scholar
  51. 51.
    Ozols, A., Reinfelde, M., Nordmanc, O., and Nordman, N., Proc. SPIE, 2001, vol. 4415, p. 425471.Google Scholar
  52. 52.
    Gertners, U. and Teteris, J., Opt. Mater., 2010, vol. 32, pp. 807–810.CrossRefGoogle Scholar
  53. 53.
    Lu, C., Recht, D., and Arnold, C., Phys. Rev. Lett., 2013, vol. 111, p. 105503.CrossRefGoogle Scholar
  54. 54.
    Kovalskiy, A., Cech, J., Tan, C.L., Heffner, W.R., Miller, E., Waits, C.M., Dubey, M., Churaman, W., Vlcek, M. and Jain, H., Proc. SPIE, 2009, vol. 7273, p. 72734A1.CrossRefGoogle Scholar
  55. 55.
    Kovalskiy, A., Cech, J., Vlcek, M., Waits, Ch.M., et al., J. Micro/Nanolithogr., MEMS, MOEMS, 2009, vol. 8, no. 4, p. 043012.CrossRefGoogle Scholar
  56. 56.
    Nordman, N. and Salminen, O., Solid State Commun., 1996, vol. 100, p. 241.CrossRefGoogle Scholar
  57. 57.
    Nordman, O., Nordman, N. and Peyghambarian, N., J. Appl. Phys., 1998, vol. 84, p. 6055.CrossRefGoogle Scholar
  58. 58.
    Tanaka, K. Appl. Phys. Lett. 1997, vol. 70, p. 261.CrossRefGoogle Scholar
  59. 59.
    Kovalskiy, A., Neilson, J.R., Miller, A.C., Miller, F.C., et al., Thin Solid Films, 2008, vol. 516, p. 7511.CrossRefGoogle Scholar
  60. 60.
    Hoffman, G.B., Zhou, W., Sooryakumar, R., Boolchand, P., and Reano, R.M., J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom., 2009, vol. 27, p. 2737.CrossRefGoogle Scholar
  61. 61.
    Takats, V., Miller, F., Jain, H., Cserhati, C. and Kokenyesi, S., Phys. Status Solidi C, 2009, vol. 6, p. S83.Google Scholar
  62. 62.
    Cserhati, C., Charnovych, S., Lytvyn, P.M., Trunov, M., et al., Mater. Lett., 2012, vol. 85, p. 113.CrossRefGoogle Scholar
  63. 63.
    Trunov, M.L., Cserhati, C., Lytvyn, P.M., Kaganovskii, Yu., and Kokenyesi, S., J. Phys. D: Appl. Phys., 2013, vol. 46, pp. 245–303.CrossRefGoogle Scholar
  64. 64.
    Stronski, A., Achimova, E., Paiuk, O., Meshalkin, A., et al., Nanoscale Res. Lett., 2016, vol. 39, no. 11, pp. 1–7.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic of Moldova

Personalised recommendations