On temperature dependence of the parameters of corona discharge current–voltage characteristics

  • F. P. Grosu
  • An. M. Bologa
  • M. K. Bologa
  • O. V. Motorin
Article
  • 30 Downloads

Abstract

The dependences of the parameters of corona discharge current–voltage characteristics on the gas temperature are considered in this work. It is shown that the corona discharge ignition voltage Uc(T) of helium and nitrogen decreases with the increase in temperature. The dependence of the parameter A(T) is complicated. It increases at the initial and final sections of the studied temperature range (20–369°C) and decreases at its central portion with two extrema. As the discharge in nitrogen is unstable, we failed to obtain any definite regularity. Generalized dependences that make assertions about the presence of a discharge different from a corona are presented. We made an assumption of an important role of two effects in the observed processes: the absorption of ions by the surface of electrodes and the continuous change in ion mobility due to the ion mass variation in the course of clustering and declustering of ions. It is supposed that there is a dynamic equilibrium between them in a steady state.

Keywords

corona discharge current–voltage characteristics voltage current mobility ions temperature pressure clusters 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Vereshchagin, I.P., Levitov, V.I., Mirzabekyan, G.Z., and Pashin, M., Osnovy elektrodinamiki dispersnykh sistem (Fundamentals of Electrodynamics of Dispersed Systems), Moscow: Energiya, 1974.Google Scholar
  2. 2.
    Raizer, Yu.P., Fizika gazovogo razryada (Physics of Gas Discharge), Moscow: Nauka, 1992.Google Scholar
  3. 3.
    Samusenko, A.V. and Stishkov, Yu.K., Elektrofizicheskie protsessy v gazakh pri vozdeistvii sil’nykh elektricheskikh polei (Electrophysical Processes in Gases under Influence of Strong Electric Fields), St. Petersburg: Izd-vo St. Pb. Gos. Univ., 2011.Google Scholar
  4. 4.
    Grosu, F.P., Bologa, An.M., Bologa, M.K., and Motorin, O.V., Similarity methods and generalizations in study of corona discharge, Proc. 11th Int. Conf. on Modern Problems of Electrophysics and Electrohydrodynamics, Peterhof, 2015, pp. 129–135.Google Scholar
  5. 5.
    Bologa, M.K., Grosu, F.P., and Kozhukhar’, I.A., Elektrokonvektsiya i teploobmen (Electroconvection and Heat Transfer), Kishinev: Shtiintsa, 1977.Google Scholar
  6. 6.
    Salvermoser, M. and Murnick, D.E., Efficient, stable, corona discharge 172 nm xenon excimer light source, J. Appl. Phys., 2003, vol. 94, no. 6, p. 3722.CrossRefGoogle Scholar
  7. 7.
    Lo Shui-Yin, Lobo Julio D., Blumberg Seth, Dibble Theodore S., Zhang Hu, Tsao Chun-Cheng, and Okumura Mitchio, Generation of energetic He atom beams by a pulsed positive corona discharge, J. Appl. Phys., 1997, vol. 81, no. 9, pp. 5896–5905.CrossRefGoogle Scholar
  8. 8.
    Grosu, F.P., Bologa, An.M., Bologa, M.K., and Motorin, O.V., Influence of gas pressure on the current–voltage characteristic of corona discharge, Sbornik dokladov XI konferentsii “Volnovaya elektrogidrodinamika provodyashchei zhidkosti. Dolgozhivushchie plazmennye obrazovaniya i maloizuchennye formy estestvennykh elektricheskikh razryadov v atmosfere” (Proc. 11th Conf. Wave Electrohydrodynamics of a Conducting Liquid. Long-Lived Plasma Formations and Understudied Forms of Natural Electrical Discharges in Atmosphere), Yaroslavl’, 2015, pp. 56–63.Google Scholar
  9. 9.
    Cherdantsev, Yu.P., Chernov, I.P., and Tyurin, Yu.I., Metody issledovaniya sistem metall-vodorod (Research Methods for Metal–Hydrogen Systems), Tomsk: Izd-vo Tomsk Polyt. Univ., 2008.Google Scholar
  10. 10.
    Tokarev, A.V., Koronnyi razryad i ego primenenie (Corona Discharge and Its Application), Bishkek: Kirg. Ros. Slav. Univ., 2009.Google Scholar
  11. 11.
    Grosu, F.P., Bologa, An.M., Bologa, M.K., and Motorin, O.V., On the simulation of a corona discharge by the similarity theory methods, Surf. Eng. Appl. Electrochem., 2014, vol. 50, no. 2, pp. 141–149.CrossRefGoogle Scholar
  12. 12.
    Smirnov, B.M., Diffusion and ion mobility in gases, Usp. Fiz. Nauk, 1967, vol. 92, no. 1, pp. 75–103.Google Scholar
  13. 13.
    Loeb, L., Fundamental Processes of Electrical Discharges in Gases, New York: Wiley & Sons Inc., 1939.Google Scholar
  14. 14.
    Karpas, Z., Eiceman, G.A., Krylov, E.V., and Krylova, N., Models on ion heating and mobility in linear field drift tubes and in differential mobility spectrometers, Int. J. Ion Mobility Spectrom., 2004, no. 7, pp. 8–18.Google Scholar
  15. 15.
    Karpas, Z., Berant, Z., and Shahal, O., Effect of temperature on the mobility of ions, J. Am. Chem. Soc., 1989, vol. 111, no. 16, pp. 6015–6018.CrossRefGoogle Scholar
  16. 16.
    Tables of Physical Quantities, Reference Book, Kikoin, I.K., Ed., Moscow: Atomizdat, 1976.Google Scholar

Copyright information

© Allerton Press, Inc. 2016

Authors and Affiliations

  • F. P. Grosu
    • 1
  • An. M. Bologa
    • 2
  • M. K. Bologa
    • 1
  • O. V. Motorin
    • 1
  1. 1.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauRepublic of Moldova
  2. 2.Karlsruhe Institute of TechnologyInstitute of Technical ChemistryEggenstein-LeopoldshafenGermany

Personalised recommendations