Surface Engineering and Applied Electrochemistry

, Volume 48, Issue 6, pp 491–520 | Cite as

Modern trends in tungsten alloys electrodeposition with iron group metals

  • N. Tsyntsaru
  • H. Cesiulis
  • M. Donten
  • J. Sort
  • E. Pellicer
  • E. J. Podlaha-Murphy
Article

Abstract

Theoretical and applied studies of tungsten alloys with iron group metals (Me-W) are being carried out worldwide, in the light of their versatile applications. The aim of this paper is to provide an overview of the works on electrodeposition of tungsten alloys with iron group metals, their properties and applications. There are 221 papers reviewing on the following theoretical and practical topics: chemistry of electrolytes used for electrodeposition, codeposition mechanisms, and properties of electrodeposited tungsten alloys. In addition, the formation of W(VI) and iron group metal (Me) complexes (polytungstates and complexes of Me(II) and W(VI)) with citrates and OH is analysed based on the published data and the calculated distribution of species as a function of pH (ranged from 1 to 10) is provided for solutions with/without citrates. The adduced data are correlated with the compositions of electrodeposited alloys. Various codeposition models of tungsten with iron group metals described in the literature are critically discussed as well. The peculiarities of the structure of tungsten alloys and their thermal stability, mechanical, tribological, and magnetic properties, corrosion performance, their applications in hydrogen electrocatalysis, template-assisted deposition into recesses (aimed to obtain micro- and nanostructures) are also reviewed and mapped.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lassner, E. and Schubert, W.D., Tungsten-Properties, Chemistry, Technology of the Element, Alloys, and Chemical Compounds, Springer, 1999.Google Scholar
  2. 2.
    Holt, M.L. and Kahlenberg, L., The Deposition of Tungsten from Aqueous Alkaline Solutions, Quart. Rev. Am. Electroplaters’ Soc., 1933, vol. 9, pp. 41–52.Google Scholar
  3. 3.
    Fink, G. and Jones, F.L., The Electrodeposition of Tungsten from Aqueous Solutions, Trans. Electrochem. Soc., 1931, vol. 59, pp. 461–481.CrossRefGoogle Scholar
  4. 4.
    Goltz, L.N. and Kharlamov, V.N., Electrolytic Deposition of Alloys of Tungsten, Nickel and Copper from Water Solutions, Zhur. Prikl. Khim., 1936, vol. 9, pp. 640–652.Google Scholar
  5. 5.
    Schwartz, M., Myung, N.V., and Nobe, K., Electro-Deposition of Iron Group-rare Earths Alloys from Aqueous Media, J. Electrochem. Soc., 2004, vol. 151, pp. C468–C477.CrossRefGoogle Scholar
  6. 6.
    Brenner, A., Burkhead, P., and Seegmiller, E., Electro-deposition of Tungsten Alloys Containing Iron, Nickel, and Cobalt, J. Res. Nat. Bur. Stand., 1947, vol. 39, pp. 351–383.CrossRefGoogle Scholar
  7. 7.
    Lietzeke, H.M. and Holt, M.L., Codeposition of Tungsten and Iron from an Aqueous Ammoniacal Citrate Bath, J. Electrochem. Soc., 1948, vol. 94, pp. 252–261.CrossRefGoogle Scholar
  8. 8.
    Holt, M.L. and Vaaler, L.E., Electrolytic Reduction of Aqueous Tungstate Solutions, J. Electrochem. Soc., 1948, vol. 94, pp. 50–58.CrossRefGoogle Scholar
  9. 9.
    Akiyama, T. and Fukushima, H., Recent Study on the Mechanism of the Electrodeposition of Iron Group Metal Alloys, ISIJ Int., 1992, vol. 32, pp. 787–798.CrossRefGoogle Scholar
  10. 10.
    Vasko, A.T., Electrochemistry of Tungsten, Kiev: Tipogr. Tehnika, 1977.Google Scholar
  11. 11.
    Brenner, A., Electrodeposition of Alloys. Principle and Practice, New York and London: Academic Press, 1963.Google Scholar
  12. 12.
    Bobletsky, M. and Jordan, J., The Metallic Complexes of Tartrates and Citrates, Their Structure and Behavior in Dilute Solutions. I. The Cupric and Nickelous Complexes, J. Am. Chem. Soc., 1945, vol. 67, pp. 1824–1831.CrossRefGoogle Scholar
  13. 13.
    Bobletsky, M. and Jordan, J., The Structure and Behavior of Ferric Tartrate and Citrate Complexes in Dilute Solutions, J. Am. chem. Soc., 1947, vol. 69, pp. 2286–2290.CrossRefGoogle Scholar
  14. 14.
    Ernst, D.W., Amlie, R.F., and Holt, M.L.J., Electrodeposition of Molydenum Alloys from Aqueous Solutions, J. Electrochem. Soc., 1955, vol. 102, pp. 461–469.CrossRefGoogle Scholar
  15. 15.
    Ernst, D.W. and Holt, M.L.J., Cathode Potentials During the Electrodeposition of Molybdenum Alloys from Aqueous Solutions, J. Electrochem. Soc., 1958, vol. 105, pp. 686–692.CrossRefGoogle Scholar
  16. 16.
    Svensson, M., Wahlstrom, U., and Holmbom, G., Compositionally Modulated Cobalt-tungsten Alloys Deposited from a Single Ammoniacal Electrolyte, Surf. Coat. Technol., 1998, vol. 105, pp. 218–223.CrossRefGoogle Scholar
  17. 17.
    Wei, G.Y., Lou, J.W., Ge, H.L., Yu, Y.D., Jiang, L., and Sun, L.X., Co-W Films Prepared from Electroplating Baths with Different Complexing Agents, Surf. Eng., 2012, vol. 28, pp. 412–417.CrossRefGoogle Scholar
  18. 18.
    Weston, D.P., Harris, S.J., Shipway, P.H., Weston, N.J., and Yap, G.N., Establishing Relationships between Bath Chemistry, Electrodeposition and Microstructure of Co-W Alloy Coatings Produced from a Gluconate Bath, Electrochim. Acta, 2010, vol. 55, pp. 5695–5708.CrossRefGoogle Scholar
  19. 19.
    Weston, D.P., Haris, S.J., Capel, H., Ahmed, N., Shipway, P.H., and Yellup, J.M., Nanostructured Co-W Coatings Produced by Electrodeposition to Replace Hard Cr on Aerospace Components, Trans. Inst. Met. Finish, 2010, vol. 88, pp. 47–56.CrossRefGoogle Scholar
  20. 20.
    Kapralova, I.G., Perelygin, Yu.P., and Semchenko, T.K., Electrodeposition of Nickel-tungsten Alloy from Acetate Electrolyte, Russ. J. Appl. Chem., 2003, vol. 76, pp. 1524–1526.CrossRefGoogle Scholar
  21. 21.
    Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Residual Stress in Ni-W Electrodeposits, Electrochim. Acta, 2006, vol. 51, pp. 6128–6134.CrossRefGoogle Scholar
  22. 22.
    Zayats, A.I. and Perekhrest, N.A., Electrodeposition of Iron-tungsten Alloys from Pyrophosphate Electrolytes, J. Appl. Chem. USSR, 1971, vol. 44, pp. 1286–1291.Google Scholar
  23. 23.
    Campbell, F. and Von Fraunhofer, J.A., Some Uses of Pyrophosphates in Metal Finishing. Part II. Cobalttungsten Alloys to Zinc, Including Pretreatment for Magnesium, Surface Technology, 1977, vol. 5, pp. 235–254.CrossRefGoogle Scholar
  24. 24.
    Cesiulis, H., Donten, M., Donten, M.L., and Stojek, Z., Electrodeposition of Ni-W, Ni-Mo and Ni-Mo-W Alloys from Pyrophosphate Baths, Materials Science (Medziagotyra), 2001, vol. 7, pp. 237–241.Google Scholar
  25. 25.
    Andricacos, P., Boettcher, S.H., Malhotra, S.G., Paunovic, M., and Ransom, C., Structure Comprising a Barrier Layer of a Tungsten Alloy Comprising Cobalt and/or Nickel, U.S. Patent Application Publication 6 pp. US 2004108136 A1 20040610 (2004).Google Scholar
  26. 26.
    Ehrfeld, W., Hessel, V., Löwe, H., Schulz, Ch., and Weber, L., Materials of LIGA Technology, Microsyst. Technol., 1999, vol. 5, pp. 105–112.CrossRefGoogle Scholar
  27. 27.
    Slavcheva, E., Mokwa, W., and Schnakenberg, U., Electro-deposition and Properties of NiW Films for MEMS Application, Electrochim. Acta, 2005, vol. 50, pp. 5573–5580.CrossRefGoogle Scholar
  28. 28.
    Navarro-Flores, E., Chong, Z., and Omanovic, S., Characterization of Ni, NiMo, NiW and NiFe Electroactive Coatings as Electrocatalysts for Hydrogen Evolution in an Acidic Medium, Journal of Molecular Catalysis A: Chemical, 2005, vol. 226, pp. 179–197.CrossRefGoogle Scholar
  29. 29.
    Sulitanu, N. and Brinza, F., Structure Properties Relationships in Electrodeposited Ni-W thin Films with Columnar Nanocrystallites, J. Optoelectron. Adv. Mater., 2003, vol. 5, pp. 421–427.Google Scholar
  30. 30.
    Lurje, Yu., Handbook of Analytical Chemistry, Moscow: Khimya, 1979.Google Scholar
  31. 31.
    Angana Sen and Panchanan Pramanik, A Chemical Sythesis of Fine-Grained Metal Tungstate Powders (M = Ca, Co, Ni, Cu, Zn), J. Eur. Ceram. Soc., 2001, vol. 21, pp. 745–750.Google Scholar
  32. 32.
    Dias, A. and Ciminelli, V.S.T., Thermodynamic Calculations and Modeling of the Hydrothermal Synthesis of Nickel Tungstates, J. Eur. Ceram. Soc., 2001, vol. 21, pp. 2061–2065.CrossRefGoogle Scholar
  33. 33.
    Osseo-Asare, K., Solution Chemistry of Tungsten Leaching Systems, Metall. Mater. Trans. B, 1982, vol. 13, pp. 555–564.CrossRefGoogle Scholar
  34. 34.
    Grith, W.P. and Lesniak, P.J.B., Raman Studies on Species in Aqueous Solutions. Part III. Vanadates, Molybdates, and Tungstates, J. Chem. Soc. A, 1969, vol. 7, pp. 1066–1071.CrossRefGoogle Scholar
  35. 35.
    Pope, M.T., Polyoxymetalates, in Encyclopedia of Inorganic Chemistry, 2nd ed., Wiley, 2005, pp. 3966–3976.Google Scholar
  36. 36.
    Aveston, J., Hydrolysis of Tungsten (VI): Ultra-centrifugation, Acidity Measurements, and Raman Spectra of Polytungstates, Inorg. Chem., 1964, vol. 3, pp. 981–986.CrossRefGoogle Scholar
  37. 37.
    Contescu, C., Jagiello, J., and Schwartz, J.A., Chemistry of Surface Tungsten Species on WO3/Al2O3 Composite Oxides under Aqueous Conditions, J. Phys. Chem., 1993, vol. 97, pp. 10152–10157.CrossRefGoogle Scholar
  38. 38.
    Kepert, D.L., Isopolytungstates, in Progress in Inorganic Chemistry, Cotton, F.A., Ed., New York: Interscience, 1962, vol. 4, pp. 199–274.CrossRefGoogle Scholar
  39. 39.
    Kotrly, S. and Šucha, L., Handbook of Chemical Equilibria in Analytical Chemistry, Chalmers, R.A. and Masson, M., Eds., N.Y.: J. Wiley, 1985.Google Scholar
  40. 40.
    Budreika, A., The Study of the Electrodeposition of Ni, Co and Their Alloys with Tungsten and Molybdenum, PhD Thesis, Vilnius: Tipogr. Vilnius University, 2010.Google Scholar
  41. 41.
    Raghunath, C., Lee, K.T., Kneer, E.A., Mathew, V., and Raghavan, S., Mechanistic Aspects of Chemical Mechanical Polishing of Tungsten Using Ferric Ion Based Glumina Slurries, Electrochemical Society Proceedings, 1997, vols. 96–22, pp. 1–7.Google Scholar
  42. 42.
    Holt, M.L. and Black, R.E., Electrodeposition of Iron-Tungsten Alloys from an Acid Plating Bath, J. Electrochem. Soc., 1942, vol. 82, pp. 205–215.CrossRefGoogle Scholar
  43. 43.
    Shacham-Diaman Yosi, Sverdlov, D.Y., and Petrov, N., Electroless Deposition of Thin-Film Cobalt-Tungsten-Phosphorus Layers Using Tungsten Phosphoric Acid (H3[P(W3O10)4]) for ULSI and MEMS Applications, J. Electrochem. Soc., 2001, vol. 148, pp. C162–C167.CrossRefGoogle Scholar
  44. 44.
    Cesiulis, H., Baltutiene, A., Donten, M., Donten, M.L., and Stojek, Z., Increase in Rate of Electrodeposition and in Ni(II) Concentration in the Bath as a Way to Control Grain Size of Amorphous/Nanocrystalline Ni-W Alloys, J. Solid State Electrochem., 2002, vol. 6, pp. 237–244.CrossRefGoogle Scholar
  45. 45.
    Cesiulis, H. and Podlaha-Murphy, E.J., Electrolyte Considerations of Electrodeposited Ni-W Alloys for Microdevice Fabrication, Materials Science (Medziagotyra), 2003, vol. 9, pp. 324–327.Google Scholar
  46. 46.
    Donten, M., Stojek, Z., and Cesiulis, H., Formation of Nanofibres in Thin Layers of Amorphous W Alloys with Ni, Co and Fe Obtained by Electrodeposition, J. Electrochem. Soc., 2003, vol. 150, pp. C95–C98.CrossRefGoogle Scholar
  47. 47.
    Donten, M., Cesiulis, H., and Stojek, Z., Electrodeposition and Properties of Ni-W, Fe-W and Ni-Fe-W Amorphous Alloys. A Comparative Study, Electrochim. Acta, 2000, vol. 45, pp. 3389–3396.CrossRefGoogle Scholar
  48. 48.
    Donten, M., Bulk and Surface Composition, Amorphous Structure, and Thermocrystallization of Electrodeposited Alloys of Tungsten with Iron, Nickel, and Cobalt, J. Solid State Electrochem., 1999, vol. 3, pp. 87–96.CrossRefGoogle Scholar
  49. 49.
    Easther, P., Kennady, C.J., Saravanan, P., and Venkatachalam, T., Structural and Magnetic Properties of Electrodeposited Ni-Fe-W Thin Films, Journal of Non-Oxide Glasses, 2009, vol. 1, pp. 301–309.Google Scholar
  50. 50.
    Cesiulis, H. and Budreika, A., Electroreduction of Ni(II) and Co(II) from Pyrophosphate Solutions, Materials Science (Medziagotyra), 2010, vol. 16, pp. 52–56.Google Scholar
  51. 51.
    Cruywagen, J.J., Krüger, L., and Rohwer, E.A., Complexation of Tungsten (VI) with Citrate, J. Chem. Soc., Dalton Trans., 1991, vol. 7, pp. 1727–1731.CrossRefGoogle Scholar
  52. 52.
    Haseeb, A.S.M.A., Albers, U., and Bade, K., Friction and Wear Characteristics of Electrodeposited Nanocrystalline Nickel-tungsten Alloy Films, Wear, 2008, vol. 264, pp. 106–112.CrossRefGoogle Scholar
  53. 53.
    Sriraman, K.R., Raman, S.G.S., and Seshadri, S.K., Synthesis and Evaluation of Hardness and Sliding Wear Resistance of Electrodeposited Nanocrystalline Ni-W, Mater. Sci. Eng. A, 2006, vol. 418, pp. 303–311.CrossRefGoogle Scholar
  54. 54.
    Yamasaki, T., High-Strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition, Materials Physics and Mechanics, 2000, vol. 1, pp. 127–132.Google Scholar
  55. 55.
    Zhu, L., Younes, O., Ashkenasy, N., Shacham-Diamand, Y., and Gileadi, E., STM/AFM Studies of the Evolution of Morphology of Electroplated Ni/W Alloys, Appl. Surf. Sci., 2002, vol. 200, pp. 1–14.CrossRefGoogle Scholar
  56. 56.
    Schuh, C.A., Nieh, T.G., and Iwasaki, H., The Effect of Solid Solution W Additions on the Mechanical Properties of Nanocrystalline Ni, Acta Mater., 2003, vol. 51, pp. 431–443.CrossRefGoogle Scholar
  57. 57.
    Donten, M., Stojek, Z., and Osteryoung, J.G., Voltammetric, Optical, and Spectroscopic Examination of Anodically Forced Passivation of Co-W Amorphous Alloys, J. Electrochem Soc., 1993, vol. 140, pp. 3417–3424.CrossRefGoogle Scholar
  58. 58.
    Donten, M. and Stojek, Z., Pulse Electroplating of Rich-in-tungsten thin Layers of Amorphous Co-W Alloys, J. Appl. Electrochem., 1996, vol. 26, pp. 665–672.CrossRefGoogle Scholar
  59. 59.
    Bodaghi, A. and Hosseini, J., Corrosion Behavior of Electrodeposited Cobalt-Tungsten Alloy Coatings in NaCl Aqueous Solution, Int. J. Electrochem. Sci., 2012, vol. 7, pp. 2584–2595.Google Scholar
  60. 60.
    Lietzke, M.H. and Holt, L., Codeposition of Tungsten and Iron from an Aqueous Ammoniacal Citrate Bath, J. Electrochem. Soc., 1948, vol. 94, pp. 252–261.CrossRefGoogle Scholar
  61. 61.
    Gamburg, Yu.D., Zakharov, E.N., and Goryunov, G.E., Electrodeposition, Structure and Properties of Irontungsten Alloys, Russ. J. Electrochem., 2001, vol. 37, pp. 670–673.CrossRefGoogle Scholar
  62. 62.
    Matsunaga, M., Li, M., and Morimitsu, M., Mechanism of Electrodeposition of Amorphous Tungsten Alloy Film, Electrochemical Society Proceedings, 1998, vols. 97–27, pp. 544–547.Google Scholar
  63. 63.
    Tsyntsaru, N., Belevsky, S., Dikusar, A., and Celis, J.-P., Tribological Behavior of Electrodeposited Cobalt-Tungsten Coatings: Dependence on Current Parameters, Trans. Inst. Metal Finish, 2008, vol. 86, pp. 301–307.CrossRefGoogle Scholar
  64. 64.
    Tsyntsaru, N., Cesiulis, H., Budreika, A., Ye, X., Juskenas, R., and Celis, J.-P., The Effect of Electrodeposition Conditions and Post-Annealing on Nanostructure of Co-W Coatings, Surf. Coat. Technol., 2012, vol. 206, pp. 4262–4269.CrossRefGoogle Scholar
  65. 65.
    Bobanova, Zh., Dikusar, A.I., Cesiulis, H., Celis, J.-P., and Prosycevas, I., Micromechanical and Tribological Properties of Nanocrystalline Coatings of Iron-Tungsten Alloys Electrodeposited from Citrate-Ammonia Solutions, Russ. J. Electrochem., 2009, vol. 45, pp. 895–901.CrossRefGoogle Scholar
  66. 66.
    Tsyntsaru, N., Dikusar, A., Cesiulis, H., Celis, J.-P., Bobanova, Z., Sidel’nikova, S., Belevskii, S., Yapontseva, Y., Bersirova, O., and Kublanovskii, V., Tribological and Corrosive Characteristics of Electrochemical Coatings Based on Cobalt and Iron Superalloys, Powder Metall. Met. Ceram., 2009, vol. 48, pp. 419–428.CrossRefGoogle Scholar
  67. 67.
    Cesiulis, H., Xie, X.G., and Podlaha-Murphy, E., Electrodeposition of Co-W Alloys with P and Ni, Materials Science (Medziagotyra), 2009, vol. 15, pp. 115–122.Google Scholar
  68. 68.
    Ibrahim, M.A.M., Abd El Rehim, S.S., and Moussa, S.O., Electrodeposition of Noncrystalline Cobalt-tungsten Alloys from Citrate Electrolytes, J. Appl. Electrochem., 2003, vol. 33, pp. 627–633.CrossRefGoogle Scholar
  69. 69.
    Eliaz, N. and Gileadi, E., The Mechanism of Induced Co-deposition of Ni-W Alloys, ECS Transactions, 2007, vol. 2, pp. 337–349.CrossRefGoogle Scholar
  70. 70.
    Younes-Metzler, O., Zhu, L., and Gileadi, E., The Anomalous Codeposition of Tungsten in the Presence of Nickel, Electrochim. Acta, 2003, vol. 48, pp. 2551–2562.CrossRefGoogle Scholar
  71. 71.
    Younes, O., Zhu, L., Rosenberg, Y., Shacham-Diamand, Y., and Gileadi, E., Electroplating of Amorphous Thin Films of Tungsten/Nickel Alloys, Langmuir, 2001, vol. 17, pp. 8270–8275.CrossRefGoogle Scholar
  72. 72.
    Belevskii, S.S., Kosova, A.P., Yushchenko, S.P., Yakhova, E.A., Shul’man, A.I., and Dikusar, A.I., Changes in the Properties of a Citrate Electrolyte Used to Manufacture Cobalt-Tungsten Coatings, Surf. Eng. Appl. Electrochem., 2011, vol. 47, pp. 4–8.CrossRefGoogle Scholar
  73. 73.
    Epelboin, I. and Wiart, R., Mechanism of the Electrocrystallization of Nickel and Cobalt in Acidic Solution, J. Electrochem. Soc., 1971, vol. 118, pp. 1577–1582.CrossRefGoogle Scholar
  74. 74.
    Belevskii, S.S., Cesiulis, H., Tsyntsaru, N.I., Dikusar, A.I., The Role of Mass Transfer in the Formation of the Composition and Structure of CoW Coatings Electrodeposited from Citrate Solutions, Surf. Eng. Appl. Electrochem., 2010, vol. 46, pp. 570–578.CrossRefGoogle Scholar
  75. 75.
    Bratoeva, M. and Atanasov, N., Effect of Sulfamatecitrate Electrolyte pH on the Ni-W Alloy Electrodeposition, Russ. J. Electrochem., 2000, vol. 36, pp. 60–63.CrossRefGoogle Scholar
  76. 76.
    Nishi, Y., Mogi, Y., Oguri, K., and Watanabe, T., Preparation of Fe-W Amorphous Films by an Electroplating Method, J. Mater. Sci. Lett., 1995, vol. 14, pp. 1–3.CrossRefGoogle Scholar
  77. 77.
    Ghaferi, Z., Raeissi, K., Golozar, M.A., and Edris, H., Characterization of Nanocrystalline Co-W Coatings on Cu Substrate, Electrodeposited from a Citrateammonia Bath, Surf. Coat. Technol., 2011, vol. 206, pp. 497–505.CrossRefGoogle Scholar
  78. 78.
    Younes, O. and Gileadi, E., Electroplating of Ni/W Alloys. I. Ammoniacal Citrate Baths, J. Electrochem. Soc., 2002, vol. 149, pp. C100–C111.CrossRefGoogle Scholar
  79. 79.
    Clark, E. and Lietzke, M.H., The Mechanism of the Tungsten Alloy Plating Process, J. Electrochem. Soc., 1952, vol. 99, pp. 245–249.CrossRefGoogle Scholar
  80. 80.
    Eliaz, N. and Gileadi, E., Induced Codeposition of Alloys of Tungsten, Molybdenum and Rhenium with Transition Metals, In Modern Aspects of Electrochemistry, 42 Springer, New York, 2008, pp. 191–301.Google Scholar
  81. 81.
    Aravinda, A., Muralidharan, V.S., and Mayanna, S.M., Electrodeposition and Dissolution of Co-W Alloy Films, J. App. Electrochem., 2000, vol. 30, pp. 601–606.CrossRefGoogle Scholar
  82. 82.
    Belevskii, S.S., Yushchenko, S.P., and Dikusar, A.I., Anomalous Electrodeposition of Co-W Coatings from a Citrate Electrolyte Due to the Formation of Multinuclear Heterometallic Complexes in the Solution, Surf. Eng. Appl. Electrochem., 2012, vol. 48, pp. 97–98.CrossRefGoogle Scholar
  83. 83.
    Fritz, Th., Mokwa, W., and Schnakenberg, U., Electrodeposited Nickel-tungsten Alloys for Micro-engineering. Part I. Deposition Based on Wagramyan Electrolytes, Galvanotechnik, 2002, vol. 93, pp. 2108–2117.Google Scholar
  84. 84.
    Juškėnas, R., Valsiūnas, I., Pakštas, V., Selskis, A., Jasulaitienė, V., Karpavičienė, V., and Kapočius, V., XRD, XPS and AFM Studies of the Unknown Phase Formed on the Surface During Electrodeposition of Ni-W Alloy, Appl. Surf. Sci., 2006, vol. 253, pp. 1435–1442.CrossRefGoogle Scholar
  85. 85.
    Fukusima, H., Akiyama, T., Akagl, S., and Higashi, K., Role of Iron-group Metals in the Induced Codeposition of Molybdenum from Aqueous Solution, Transactions of the Japan Institute of Metals, 1979, vol. 20, pp. 358–364.Google Scholar
  86. 86.
    Oue, S., Nakano, H., Kobayashi, S., and Fukushima, H., Structure and Codeposition Behavior of Ni-W Alloys Electrodeposited from Ammoniacal Citrate Solutions, J. Electrochem. Soc., 2009, vol. 156, pp. D17–D22.CrossRefGoogle Scholar
  87. 87.
    Chassaing, E., Quang, K., and Wiart, R., Mecahnism of Nickel-molybdenum Alloy Electrodeposition in Citrate Electrolytes, J. Appl. Electrochem., 1989, vol. 19, pp. 839–834.CrossRefGoogle Scholar
  88. 88.
    Go’mez, E., Pellicer, E., and Valle’s, E., An Approach to the First Stages of Cobalt-nickel-molybdenum, Electro-deposition in Sulphate-citrate Medium, J. Electroanal. Chem., 2005, vol. 580, pp. 222–230.CrossRefGoogle Scholar
  89. 89.
    Sun, S. and Podlaha, E.J., Electrodeposition of Morich, MoNi Alloys from an Aqueous Electrolyte, J. Electrochem. Soc., 2012, vol. 159, pp. D1–D6.CrossRefGoogle Scholar
  90. 90.
    Podlaha, E.J. and Landolt, D., Induced Codeposition: I. Experimental Investigation of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 885–892.CrossRefGoogle Scholar
  91. 91.
    Podlaha, E.J. and Landolt, D., Induced Codeposition: II. Mathematical Modeling of Ni-Mo Alloys, J. Electrochem. Soc., 1996, vol. 143, pp. 893–899.CrossRefGoogle Scholar
  92. 92.
    Podlaha, E.J. and Landolt, D., Induced Codeposition: III. Molybdenum Alloys with Nickel, Cobalt and Iron, J. Electrochem. Soc., 1997, vol. 144, pp. 1672–1680.CrossRefGoogle Scholar
  93. 93.
    Jakšič, J.M., Vojnovic, M.V, and Krstajic, N.V., Kinetic Analysis of Hydrogen Evolution at Ni-Mo Alloy Electrodes, Electrochim. Acta, 2000, vol. 45, pp. 4151–4158.CrossRefGoogle Scholar
  94. 94.
    Matlosz, M., Competitive Adsorption Effects in the Electrodeposition of Iron-nickel Alloys, J. Electrochem. Soc., 1993, vol. 140, pp. 2272–2279.CrossRefGoogle Scholar
  95. 95.
    Baker, B.C. and West, A.C., Electrochemical Impedance Spectroscopy Study of Nickel-iron Deposition: II. Theoretical Interpretation, J. Electrochem. Soc., 1997, vol. 144, pp. 169–175.CrossRefGoogle Scholar
  96. 96.
    Zech, N., Podlaha, E.J., and Landolt, D., Anomalous Codeposition of Iron-Group Alloys. II. Mathematical Model, J. Electrochem. Soc., 1999, vol. 146, pp. 2892–2900.CrossRefGoogle Scholar
  97. 97.
    Podlaha, E.J., Agarwal, P., and Landolt, D., A Study of the Mo Codeposition Mechanism by Electrochemical Impedance Spectroscopy, Proceedings of the Symposium on Fundamental Aspects of Electrochemical Deposition and Dissolution Including Modeling, Paunovic, J.M., Datta, M., Osaka, T., and Talbot, J.B., Eds., The Electrochemical Society, Pennington, NJ, 1997, vols. 97-27, pp. 510–512.Google Scholar
  98. 98.
    Beltowska-Lehman, E., Kinetics of Induced Electrodeposition of Alloys Containing Mo from Citrate Solutions, Phys. Status Solidi C, 2008, vol. 5, pp. 3514–3517.CrossRefGoogle Scholar
  99. 99.
    Obradovič, M., Stevanovič, J., Despič, A.R., and Stevanovič, R., Electrochemical Deposition and Phase Structure of Electrodeposited Ni-W Alloys, J. Serb. Chem. Soc., 1999, vol. 64, pp. 245–257.Google Scholar
  100. 100.
    Kröger, F.A., Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds, J. Electrochem. Soc., 1978, vol. 125, pp. 2028–2034.CrossRefGoogle Scholar
  101. 101.
    Landolt, D., Electrochemical and Materials Science Aspects of Alloy Deposition, Electrochim. Acta, 1994, vol. 39, pp. 1075–1090.CrossRefGoogle Scholar
  102. 102.
    Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Residual Stress in Ni-W Electrodeposits, Electrochim. Acta, 2006, vol. 51, pp. 6128–6134.CrossRefGoogle Scholar
  103. 103.
    Mizushima, I., Tang, P.T., Hansen, H.N., and Somers, M.A.J., Development of a New Electroplating Process for Ni-W Alloy Deposits, Electrochim. Acta, 2006, vol. 51, pp. 888–896.CrossRefGoogle Scholar
  104. 104.
    Donten, M., Gromulski, T., and Stojek, Z., The Interface the Interface between Metallic Substrates and Layers of Electrodeposited Co-W Amorphous Alloys, J. Alloys Compd., 1998, vol. 279, pp. 272–278.CrossRefGoogle Scholar
  105. 105.
    Sulitanu, N., Structural Origin of Perpendicular Magnetic Anisotropy in Ni-Wthin Films, J. Magn. Magn. Mater., 2001, vol. 231, pp. 85–93.CrossRefGoogle Scholar
  106. 106.
    Vasauskas, V., Padgurskas, J., Rukuiža, R., Cesiulis, H., Celis, J.-P., Milčius, D., Prosyčevas, I., Cracking Behavior of Electrodeposited Nanocrystalline Tungsten-cobalt and Tungsten-iron Coatings, Mechanika, 2008, vol. 72, no. 4, pp. 21–27.Google Scholar
  107. 107.
    Ghaferi, Z., Raeissi, K., Golozar, M.A., Saatchi, A., and Kab, S., Comparison of Electrodeposition Aspects and Characteristics of Ni-W and Co-W Alloy Nanocrystalline Coatings, Iran. J. Mater. Sci. Eng., 2010, vol. 7, pp. 16–24.Google Scholar
  108. 108.
    Yamasaki, T., Schlossmacher, P., Ehrich, K., and Ogino, Y., Formation of Amorphous Electrodeposited Ni-W Alloys and their Nanocrystallization, Nanostruct. Mater., 1998, vol. 10, pp. 375–388.CrossRefGoogle Scholar
  109. 109.
    Huang, L., Dong, J.X., Yang, F.Z., Xu, S.K., and Zhou, S.M., Studies on the Mechanism, Structure and Microhardness of Ni-W Alloy Electrodeposits, Trans. IMF, 1999, vol. 77, pp. 185–187.Google Scholar
  110. 110.
    Królikowski, A., Płon-ska, E., Ostrowski, A., Donten, M., and Stojek, Z., Effects of Compositional and Structural Features on Corrosion Behavior of Nickel-tungsten Alloys, J. Solid State Electrochem., 2009, vol. 13, pp. 263–275.CrossRefGoogle Scholar
  111. 111.
    Sridhar, T.M., Eliaz, N., and Gileadi, E., Electroplating of Ni4W, Electrochem. Solid-State Lett., 2005, vol. 8, pp. C58–C61.CrossRefGoogle Scholar
  112. 112.
    Yamasaki, Y., High-Strength Nanocrystalline Ni-W Alloys Produced by Electrodeposition and Their Embrittlement Behaviors During Grain Growth, Scripta Mater., 2001, vol. 44, pp. 1497–1502.CrossRefGoogle Scholar
  113. 113.
    Kimoto, Y., Giga, A., Ohkubo, T., Takigawa, Y., Hono, K., and Higashi, K., Ni-W Amorphous/Nanocrystalline Duplex Composite Produced by Electrodeposition, Mater. Trans., JIM, 2007, vol. 48, pp. 996–1000.CrossRefGoogle Scholar
  114. 114.
    Tsyntsaru, N., Bobanova, J., Ye, X., Cesiulis, H., Dikusar, A., Prosycevas, I., and Celis, J.-P., Irontungsten Alloys Electrodeposited under Direct Current from Citrate-ammonia Plating Baths, Surf. Coat. Technol., 2009, vol. 203, pp. 3136–3141.CrossRefGoogle Scholar
  115. 115.
    Younes, O. and Gileadi, E., Electroplating of High Tungsten Content Ni/W Alloys, Electrochem. Solid-State Lett., 2000, vol. 3, pp. 543–545.CrossRefGoogle Scholar
  116. 116.
    Zakharov, E.N., Gamburg, Yu.D., Goryunov, G.E., and Lyakhov, B.F., Effect of Cations of Alkali Metals and Ammonium on the Process of Deposition and Structure of Iron-tungsten Alloys, Russ. J. Electrochem., 2006, vol. 42, pp. 895–900.CrossRefGoogle Scholar
  117. 117.
    Pisarek, M., Janik-Czachor, M., and Donten, M., Local Characterization of Electrodeposited Ni-W Amorphous Alloy by Auger Microanalysis, Surf. Coat. Technol., 2008, vol. 202, pp. 1980–1984.CrossRefGoogle Scholar
  118. 118.
    Li, H., Li, H.X., and Deng, J.-F., The Crystallization Process of Ultrafine Ni-B Amorphous Alloy, Mater. Lett., 2001, vol. 50, pp. 41–46.CrossRefGoogle Scholar
  119. 119.
    Yamasaki, T., Schlossmacher, P., Ehrlich, K., and Ogino, Y., Nanocrystallization and Mechanical Properties of an Amorphous Electrodeposited Ni75W25 Alloy, Mater. Sci. Forum, 1998, vols. 269–272, pp. 975–980.CrossRefGoogle Scholar
  120. 120.
    Pekala, M., Donten, M., and Stojek, Z., Crystallization Study of Amorphous Ni-W Alloys, Mater. Sci. Eng. A, 1997, vols. 226–228, pp. 125–127.Google Scholar
  121. 121.
    Capel, H., Shipway, P.H., and Harris, S.J., Sliding Wear Behaviour of Electrodeposited Cobalt-tungsten and Cobalt-tungsten-iron Alloys, Wear, 2003, vol. 255, pp. 917–923.CrossRefGoogle Scholar
  122. 122.
    Juskenas, R., Valsiunas, I., Pakstas, V., and Giraitis, R., On the State of W in Electrodeposited Ni-W Alloys, Electrochim. Acta, 2009, vol. 54, pp. 2616–2620.CrossRefGoogle Scholar
  123. 123.
    Mun, S.-J., Kim, M., Yim, T.-H., Lee, J.-H., and Kang, T., Mechanical and Structural Characteristics of Electrodeposited Ni-Fe-W Alloy after Heat-treatment, J. Electrochem. Soc., 2010, vol. 157, pp. D177–D180.CrossRefGoogle Scholar
  124. 124.
    He, F.-J., Lei, J.-T., Lu, X., and Huang, Y.-N., Friction and Wear Behavior of Electrodeposited Amorphous Fe-Co-W Alloy Deposits, Trans. Nonferrous Met. Soc. China, 2004, vol. 14, pp. 901–906.Google Scholar
  125. 125.
    Su, F.-H. and Huang, P., Microstructure and Tribological Property of Nanocrystalline Co-W Alloy Coating Produced by Dual-pulse Electrodeposition, Mater. Chem. Phys., 2012, vol. 134, pp. 350–359.CrossRefGoogle Scholar
  126. 126.
    Hamid, A.Z., Electrodeposition of Cobalt-tungsten Alloys from Acidic Bath Containing Cationic Surfactants, Mater. Lett., 2003, vol. 57, pp. 2558–2564.CrossRefGoogle Scholar
  127. 127.
    Mulukutla, M., Kommineni, V.K., and Harimkar, S.P., Pulsed Electrodeposition of Co-W Amorphous and Crystalline Coatings, Appl. Surf. Sci., 2012, vol. 258, pp. 2886–2893.CrossRefGoogle Scholar
  128. 128.
    He, F., Yang, J., Le, T., and Gu, Ch., Structure and Properties of Electrodeposited Fe-Ni-W Alloys with Different Levels of Tungsten Content: A Comparative Study, Appl. Surf. Sci., 2007, vol. 253, pp. 7591–7598.CrossRefGoogle Scholar
  129. 129.
    Quiroga, A.M.P., Ribotta, S.B., Folquer, M.E., Gassa, L.M., Benitez, G., Vela, M.E., and Salvarezza, R.C., Ni-W Coatings Electrodeposited on Carbon Steel: Chemical Composition, Mechanical Properties and Corrosion Resistance, Electrochim. Acta, 2011, vol. 56, pp. 5898–5903.CrossRefGoogle Scholar
  130. 130.
    Seong-Jae Mun, Minsoo Kim, Tae-Hong Yim, Jae-Ho Lee, and Tak Kanga, Mechanical and Structural Characteristics of Electrodeposited Ni-Fe-W Alloy after Heat-Treatment, J. Electrochem. Soc., 2010, vol. 157, pp. 177–180.Google Scholar
  131. 131.
    Brooman, E.W., Wear Behavior of Environmentally Acceptable Alternatives to Chromium Coatings: Cobalt Based and Other Coatings, Met. Finish., 2002, vol. 102, pp. 42–54.CrossRefGoogle Scholar
  132. 132.
    Rabinowicz, E., Friction and Wear of Materials, New York: Tipogr. John Wiley.Google Scholar
  133. 133.
    Kumar, K.S., Van Swygenhoven, H., and Suresh, S., Mechanical Behavior of Nanocrystalline Metals and Alloys, Acta Mater., 2003, vol. 51, pp. 5743–5774.CrossRefGoogle Scholar
  134. 134.
    Buckley, D.H., Surface Effects in Adhesion, Friction, Wear and Lubrication, in Tribology series No. 5, Tipogr. Elsevier, 1981.Google Scholar
  135. 135.
    Wang, L., Gaoa, Y., Xua, T., and Xuea, Q.A., Comparative Study on the Tribological Behavior of Nanocrystalline Nickel and Cobalt Coatings Correlated with Grain Size and Phase Structure, Mater. Chem. Phys., 2006, vol. 99, pp. 96–103.CrossRefGoogle Scholar
  136. 136.
    Gamburg, Yu.D. and Zaharov, E.N., The Effect of Hydrogen on Amorfization of Iron-Tungsten Alloys Produced by Electrochemical Synthesis, Russ. J. Electrochem., 2008, vol. 44, pp. 736–740.CrossRefGoogle Scholar
  137. 137.
    Tsyntsaru, N.I., Bobanova, Zh.I., Kroitoru, D.M., Cheban, V.F., Poshtaru, G.I., and Dikusar, A.I., Effect of a Multilayer Structure and Lubrication on the Tribological Properties of Coatings of Fe-W Alloys, Surf. Eng. Appl. Electrochem., 2010, vol. 46, pp. 538–546.CrossRefGoogle Scholar
  138. 138.
    Loewe, H., Ehrfeld, W., and Diebel, J., Ultraprecision Microelectroforming of Metals and Metal Alloys, Proceeding of SPIE, Micromachining and Micro-fabrication Process Technology III, 1997, vol. 3223, pp. 168–487.CrossRefGoogle Scholar
  139. 139.
    Singh, V.B., Singh, L.C., and Tikoo, P.K., Studies on Electrodeposition of Nickel-Cobalt-Tungsten Alloys, J. Electrochem. Soc., 1980, vol. 127, pp. 590–596.CrossRefGoogle Scholar
  140. 140.
    Frantsevich, I.N., Teodorovich, O.K., Buzhenova, L.V., and Minakova, R.V., Loss of Hardness of the Tungsten-Nickel-Iron Alloy During Heating. Article II, Powder Metall. Met. Ceram., 1967, vol. 6, pp. 920–925.CrossRefGoogle Scholar
  141. 141.
    Bersirova, O., Cesiulis, H., Donten, M., Krolikowski, A., Stoek, Z., and Baltrunas, G., Corrosion and Anodic Behavior of Electrodeposited Ni-Mo Alloys, Physicochemical Mechanics of Materials, 2004, no. 4, pp. 620–625.Google Scholar
  142. 142.
    Safonov, V.A., Vykhodtseva, L.N., Edigaryan, A.A., Aliev, A.D., Molodkina, E.B., Danilov, A.I., Lubnin, E.N., and Polukarov, Y.M., Corrosion-Electrochemical Behavior of Chromium Deposits Obtained from Sulfuric Acid Solutions Containing Oxalates, Russ. J. Electrochem., 2001, vol. 37, pp. 127–134.CrossRefGoogle Scholar
  143. 143.
    Sinkeviciute, J., Corrosion Study of Electrodeposited W and Mo Alloys with Iron Group Metals, PhD Theses, Vilnius: Tipogr. Vilnius University, 2009.Google Scholar
  144. 144.
    Elezovic, N., Grgur, B.N., Krstajic, N.V., and Jovic, V.D., Electrodeposition and Characterization of Fe-Mo Alloys as Cathodes for Hydrogen Evolution in the Process of Chlorate Production, J. Serb. Chem. Soc., 2005, vol. 70, no. 6, pp. 879–889.CrossRefGoogle Scholar
  145. 145.
    Cesiulis, H. and Budreika, A., Hydrogen Evolution and Corrosion of W and Mo Alloys with Co and Ni, Physicochemical Mechanics of Materials, 2010, no. 8, pp. 808–814.Google Scholar
  146. 146.
    Cesiulis, H., Sinkevičiūtė, J., Bersirova, O., and Ponthiaux, P., Tribocorrosion Testing of Self-Passivating Molybdenum and Tungsten Alloys Containing Cobalt and Iron, BALTTRIB’ 2009: Int. conf. TB, Proceedings, 2009, pp. 253–258.Google Scholar
  147. 147.
    Hosseini, M.G., Abdolmaleki, M., Ebrahimzadesh, H., and Seyed Sadjadi, S.A., Effect of 2-butene-1,4-diol on the Nanostructure and Corrosion Resistance Properties of Electrodeposited Ni-W-B Coatings, Int. J. Electrochem. Sci., 2011, vol. 6, pp. 1189–1205.Google Scholar
  148. 148.
    Kublanovsky, V., Bersirova, O., Dikusar, A., Bobanova, Zh., Cesiulis, H., Sinkeviciute, J., and Prosycevas, I., Electrodeposition and Corrosion Properties of Nanocrystalline Fe-W Alloys, Physicochemical Mechanics of Materials, 2008, no. 7, pp. 308–314.Google Scholar
  149. 149.
    Obradovic, M., Stevanovic, J., Despic, A., Stevanovic, R., and Stoch, J., Characterization and Corrosion Properties of Electrodeposited Ni-W Alloys, J. Serb. Chem. Soc., 2001, vol. 66, pp. 899–912.Google Scholar
  150. 150.
    Galikova, Z., Chovancova, M., and Danielik, V., Properties of Ni-W Alloy Coatings on Steel Substrate, Chem. Pap., 2006, vol. 60, pp. 353–359.CrossRefGoogle Scholar
  151. 151.
    Tharamani, C.N., Beera, P., Jayaram, V., Begum Noor Shahina, and Mayanna, S.M., Studies on Electrodeposition of Fe-W Alloys for Fuel Cell Applications, Appl. Surf. Sci, 2006, vol. 253, pp. 2031–2037.CrossRefGoogle Scholar
  152. 152.
    Yao, S., Zhao, S., Guo, H., and Kowaka, M., A New Amorphous Alloy Deposit with High Corrosion Resistance, Corrosion, 1996, vol. 52, pp. 183–186.CrossRefGoogle Scholar
  153. 153.
    Myung, N.V., Park, D.-Y., Yoo, B.Y., and Sumodjo, P.T.A., Development of Electroplated Magnetic Materials for MEMS, J. Magn. Magn. Mater., 2003, vol. 265, pp. 189–198.CrossRefGoogle Scholar
  154. 154.
    Myung, N.V., Park, D.-Y., Yang, H., Schwartz, M., Judy, J.W., Yang, C.-K., and Nobe, K., Electrodeposited Hard Magnetic thin Films for MEMS Applications, Proc. Electrochem. Soc., 2000, PV2000-29, pp. 506–520.Google Scholar
  155. 155.
    Yang, H.H., Myung, N.V., Lee, J., Park, D.Y., Yoo, B.Y., Schwartz, M., Nobe, K., and Judy, J.W., Ferromagnetic Micromechanical Magnetometer, Sens. Actuators A, 2002, vols. 97–98, pp. 88–97.Google Scholar
  156. 156.
    Wei, G., Ge, H., Zhu, X., Wu, Q., Yu, J., and Wang, B., Effect of Organic Additives on Characterization of Electrodeposited Co-W thin Films, Appl. Surf. Sci., 2007, vol. 253, pp. 7461–7466.CrossRefGoogle Scholar
  157. 157.
    Admon, U., Dariel, M.P., Gunbaum, E., and Lodder, J.C., Magnetic Properties of Electrodeposited Co-W Thin Films, J. Appl. Phys., 1987, vol. 62, pp. 1943–1948.CrossRefGoogle Scholar
  158. 158.
    Park, D.Y. and Ko, J.M., Magnetic Properties of Nanocrystalline CoW Thin Film Alloys Electrodeposited from Citrate Baths, J. Korean Electrochem. Soc., 2003, vol. 6, pp. 236–241.CrossRefGoogle Scholar
  159. 159.
    Sasikumar, D. and Ganesan, S., Effect of Temperature and Current Density in Electrodeposited Co-W Magnetic Nano Thin Film, Dig. J. Nanomater. Bios., 2010, vol. 5, pp. 477–482.Google Scholar
  160. 160.
    Chiriac, H., Moga, A.E., Gherasim, C., and Lupu, N., Preparation and Magnetic Properties of Fe-W and Ni-W Composite Coatings, Semiconductor Conference, 2007. CAS 2007. International, 2007, vol. 2, pp. 307–310.Google Scholar
  161. 161.
    Ge, H., Wu, Q., Wei, G., Wang, X., and Zhou, Q., Effects of Bath Temperature on Electrodeposited Permanent Magnetic Co-Pt-W(P) Films, Bull. Korean Chem. Soc., 2007, vol. 28, pp. 2214–2218.CrossRefGoogle Scholar
  162. 162.
    Esther, P., Kennady, C.J., Saravanan, P., and Venkatachalam, T., Structural and Magnetic Properties of Electrodeposited Ni-Fe-W Thin Films, Journal of Non-Oxide Glasses, 2009, vol. 1, pp. 301–309.Google Scholar
  163. 163.
    Franz, S., Bestetti, M., Consonni, M., and Cavallotti, P.L., Electrodeposition of Micromagnets of CoPtW(P) Alloys, Microelectron. Eng., 2002, vol. 64, pp. 487–494.CrossRefGoogle Scholar
  164. 164.
    Ng, W.B., Takada, A., and Okada, K., Electrodeposited Co-Ni-Re-W-P Thick Array of High Vertical Magnetic Anisotropy, IEEE Trans. Magn., 2005, vol. 41, pp. 3886–3888.CrossRefGoogle Scholar
  165. 165.
    Fullerton, E.E., Jiang, J.S., and Bader, S.D., Hard/Soft Magnetic Heterostructures: Model Exchange-Spring Magnets, J. Magn. Magn. Mater., 1999, vol. 200, pp. 392–404.CrossRefGoogle Scholar
  166. 166.
    Arul Raj, I. and Vasu, K.I., Transition Metal-Based Hydrogen Electrodes in Alkaline Solution-Electro-Catalysis on Nickel Based Binary Alloy Coatings, J. Appl. Electrochem., 1990, vol. 20, pp. 32–38.CrossRefGoogle Scholar
  167. 167.
    Fan, C., Piron, D.L., Sleb, A., and Paradis, P., Electro-Deposited Nickel-Molybdenum, Nickel-Tungsten, Cobalt-Molybdenum, and Cobalt-Tungsten as Hydrogen Electrodes in Alkaline Water Electrolysis, J. Electrochem. Soc., 1994, vol. 141, pp. 382–387.CrossRefGoogle Scholar
  168. 168.
    Kawashima, A., Akiyama, E., Habazaki, H., and Hashimoto, K., Characterization of Sputter-Deposited Ni-Mo and Ni-W Alloy Electrocatalysts for Hydrogen Evolution in Alkaline Solution, Mater. Sci. Eng. A, 1997, vols. 226–228, pp. 905–909.Google Scholar
  169. 169.
    Marceta Kaninski, M.P., Saponjic, D.P., Perovic, I.M., Maksic, A.D., and Nikolic, V.M., Electrochemical Characterization of the Ni-W Catalyst Formed in Situ During Alkaline Electrolytic Hydrogen ProductionPart II, Appl. Catal. A, 2011, vol. 405, pp. 29–35.CrossRefGoogle Scholar
  170. 170.
    Wang, M., Wang, Z., Guo, Z., and Li, Z., The Enhanced Electrocatalytic Activity and Stability of NiW Films Electrodeposited under Super Gravity Field for Hydrogen Evolution Reaction, Int. J. Hydrog. Energy, 2011, vol. 36, pp. 3305–3312.CrossRefGoogle Scholar
  171. 171.
    Lua, G., Evans, P., and Zangari, G., Electrocatalytic Properties of Ni-Based Alloys Toward Hydrogen Evolution Reaction in Acid Media, J. Electrochem. Soc., 2003, vol. 150, pp. A551–A557.CrossRefGoogle Scholar
  172. 172.
    Rashkov, R., Arnaudova, M., Avdeev, G., Zielonka, A., Jannakoudakis, P., and Jannakoudakis, A., Theodoridou E. NiW/TiOx Composite Layers as Cathode Material for Hydrogen Evolution Reaction, Int. J. Hydrog. Energy, 2009, vol. 34, pp. 2095–2100.CrossRefGoogle Scholar
  173. 173.
    Hu, H., Fan, Y., and Liu, H., Hydrogen Production in Single-chamber Tubular Microbial Electrolysis Cells Using Non-precious-metal Catalysts, Int. J. Hydrog. Energy, 2009, vol. 34, pp. 8535–8542.CrossRefGoogle Scholar
  174. 174.
    Nenastina, T., Bairachnaya, T., Ved, M., Shtefan, V., and Sakhnenko, N., Electrochemical Synthesis of Catalytic Active Alloys, Functional Materials, 2007, vol. 14, pp. 395–400.Google Scholar
  175. 175.
    Ved, M., Shtefan, V., Bairachnaya, T., and Sakhnenko, N., New Approach to Catalytic Co-W Alloy Electrodeposition, Functional Materials, 2007, vol. 14, pp. 580–584.Google Scholar
  176. 176.
    Zabinski, P.R., Kowalik, R., and Piwowarczyk, M., Cobalt-Tungsten Alloys for Hydrogen Evolution in Hot 8M NaOH, Arch. Metall. Mater., 2007, vol. 52, pp. 627–634.Google Scholar
  177. 177.
    Marceta Kaninski, M.P., Miulovic, S.M., Tasic, G.S., Maksic, A.D., and Nikolic, V.M., A Study on the Co-W Activated Ni Electrodes for the Hydrogen Production from Alkaline Water Electrolysis-Energy Saving, Int. J. Hydrogen Energy, 2011, vol. 36, pp. 5227–5235.CrossRefGoogle Scholar
  178. 178.
    Menz, W., Bacher, W., Harmening, M., and Michel, A., The LIGA Technique-a Novel Concept for Microstructures and the Combination of Si-technologies by Injection Molding, in IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan: IEEE Press, 1991, pp. 69–73.CrossRefGoogle Scholar
  179. 179.
    Bley, P., Menz, W., Bacher, W., Feit, K., Harmening, M., Hein, H., Mohr, J., Schomburg, W.K., and Stark, W., Application of the LIGA Process in Fabrication of Three-dimensional Mechanical Micro-structures, in MicroProcess 91, 1991 International MicroProcess Conference, Namba, S. and Tsurushima, T., Eds., Kanazawa, Japan, 1991, pp. 384–389.Google Scholar
  180. 180.
    Romankiw, L.T., Electroformation of Electronic Devices, Plat. Surf. Finish, 1997, vol. 84, pp. 10–16.Google Scholar
  181. 181.
    Guckel, H., Skrobis, K.J., Christenson, T.R., Klein, J., Han, S., Choi, B., and Lovell, E.G., Fabrication of Assembled Micromechanical Components Via Deep X-ray Lithography, in IEEE Workshop on Micro Electro Mechanical Systems, Nara, Japan: IEEE Press, 1991, pp. 74–79.CrossRefGoogle Scholar
  182. 182.
    Burbaum, C., Mohr, J., Bley, P., and Ehrfeld, W., Fabrication of Capacitive Acceleration Sensors by the LIGA Technique, Sens. Actuators A, 1991, vols. 25–27, pp. 559–563.Google Scholar
  183. 183.
    Hemker, K.J. and Last, H., Microsample Tensile Testing of LIGA Nickel for MEMS Applications, Mater. Sci. Eng. A, 2001, vols. 319–321, pp. 882–886.Google Scholar
  184. 184.
    Buchheit, T.E., Lavan, D.A., Michael, J.R., and Leith, S.D., Microstructural and Mechanical Properties Investigation of Electrodeposited and Annealed LIGA Nickel Structures, Metall. Mater. Trans. A, 2002, vol. 33A, pp. 539–554.CrossRefGoogle Scholar
  185. 185.
    Christenson, T.R., Buchheit, T.E., Schmale, D.T., and Bourcier, R.J., Mechanical and Metallographic Characterization of Liga Fabricated Nickel and 80%Ni-20%Fe, Materials Research Society Symposium Proceedings, 1998, vol. 518, pp. 185–190.CrossRefGoogle Scholar
  186. 186.
    Klement, U., Aust, K.T., Erb, U., and El-Sherik, M., Thermal Stability of Nanocrystalline Ni, Mater. Sci. Eng. A, 1995, vol. 203, pp. 177–186.CrossRefGoogle Scholar
  187. 187.
    Czerwinski, F. and Szpunar, J.A., Controlling the Thermal Stability of Texture in Single-Phase Electro-Deposits, Nanostruct. Mater., 1999, vol. 11, pp. 669–676.CrossRefGoogle Scholar
  188. 188.
    Cho, H.S., Hemker, K.J., Lian, K., and Goettert, J., MEMS 2002 Technical Digest, in 15th IEEE International Conference on MEMS, 2002, pp. 439–442.Google Scholar
  189. 189.
    Suresha, S.J., Haj-Taieb, M., Bade, K., Aktaa, J., and Hemker, K.J., The Influence of Tungsten on the Thermal Stability and Mechanical Behavior of Electrodeposited Nickel MEMS Structures, Scr. Mater., 2010, vol. 63, pp. 1141–1144.CrossRefGoogle Scholar
  190. 190.
    Haj-Taieb, M., Haseeb, A.S.M.A., Caulfield, J., Bade, K., Aktaa, J., and Hemker, K.J., Thermal Stability of Electrodeposited LIGA Ni-W Alloys for High Temperature MEMS Applications, Microsyst. Technol., 2008, vol. 14, pp. 1531–1536.CrossRefGoogle Scholar
  191. 191.
    Armstrong, D.E.J., Haseeb, A.S.M.A., Roberts, S.G., Wilkinson, A.J., and Bade, K., Nanoindentation and Micro-mechanical Fracture Toughness of Electrodeposited Nanocrystalline Ni-W Alloy Films, Thin Solid Films, 2012, vol. 520, pp. 4369–4372.CrossRefGoogle Scholar
  192. 192.
    Wang, H., Liu, R., Cheng, F., Cao, Y., Ding, G., and Zhao, X., Electrodepositing Amorphous Ni-W Alloys for MEMS, Microelectron. Eng., 2010, vol. 87, pp. 1901–1906.CrossRefGoogle Scholar
  193. 193.
    Podlaha, E.J., Namburi, L., and Murphy, M.C., Nickel Alloy Electrodeposited Microstructures, Patent Application Publication No. US-2004-0011432-A1, 2004.Google Scholar
  194. 194.
    Ross, C.A., Electrodeposited Multilayer thin Films, Annu. Rev. Mater. Sci., 1994, vol. 24, pp. 159–188.CrossRefGoogle Scholar
  195. 195.
    Schwarzacher, W. and Lashmore, D.S., Giant Magneto-resistance in Electrodeposited Films, IEEE Trans. Magn., 1996, vol. 32, pp. 3133–3153.CrossRefGoogle Scholar
  196. 196.
    Alper, M., Electrodepozition of Multilayered Nanostructures, Nanostructured Magnetic Materials and Their Applications, Lecture Notes in Physics, vol. 593, Shi, D., Aktas, B., Pust, L., and Mikailov, F., Eds., Berlin: Springer, 2002, pp. 11–128.CrossRefGoogle Scholar
  197. 197.
    Fert, A., Barthelemy, A., Galtier, P., Holody, P., Loloee, R., Morel, R., Petroff, F., Schroeder, P., Steren, L.B., and Valet, T., Giant Magnetoresistance in Magnetic Nano-structures. Recent developments, Mater. Sci. Eng. B, 1995, vol. 31, pp. 1–9.CrossRefGoogle Scholar
  198. 198.
    Lee, S.F., Pratt, W.P., Yang, Q., Holody, P., Loloee, R., Schroeder, P.A., and Bass, J., Two-Channel Analysis of CPP-MR Data for Ag/Co and AgSn/Co Multilayers, J. Magn. Magn. Mater., 1993, vol. 118, pp. L1–L5.CrossRefGoogle Scholar
  199. 199.
    Pratt, W.P., Lee, S.F., Holody, P., Yang, Q., Loloee, R., Bass, J., Schroeder, P.A., Giant Magnetoresistance with Current Perpendicular to the Multilayer Planes, J. Magn. Magn. Mater.,@ 1993, vol. 126, pp. 406–409.CrossRefGoogle Scholar
  200. 200.
    Liu, K., Nagodawithana, K., Searson, P.C., and Chien, C.L., Perpendicular Giant Magnetoresistance of Multilayered Co/Cu Nanowires, Phys. Rev. B, 1995, vol. 51, pp. 7381–7385.CrossRefGoogle Scholar
  201. 201.
    Blondel, A., Doudin, B., and Ansermet, J.-P., Comparative Study of the Magnetoresistance of Electrodepo-Sited Co/Cu Multilayered Nanowires Made by Single and Dual Bath Techniques, J. Magn. Magn. Mater., 1997, vol. 165, pp. 34–37.CrossRefGoogle Scholar
  202. 202.
    Piraux, L., George, J.M., Despres, J.F., Leroy, C., Ferain, E., Legras, R., Ounadjela, K., and Fert, A., Giant Magnetoresistance in Magnetic Multilayered Nano-wires, Appl. Phys. Lett., 1994, vol. 65, pp. 2484–2487.CrossRefGoogle Scholar
  203. 203.
    Dubois, S., Beuken, J.M., Piraux, L., Duvail, J.L., Fert, A., George, J.M., and Mauric, J.L., Perpendicular Giant Magnetoresistance of NiFe/Cu and Co/Cu Multilayered Nanowires, J. Magn. Magn. Mater., 1997, vol. 165, pp. 30–33.CrossRefGoogle Scholar
  204. 204.
    Piraux, L., Dubois, J.S., Duvail, J.L., Ounadjela, K., and Fert, A., Arrays of Nanowires of Magnetic Metals and Multilayers: Perpendicular GMR and Magnetic Properties, J. Magn. Magn. Mater., 1997, vol. 175, pp. 127–136.CrossRefGoogle Scholar
  205. 205.
    Pullini, D., Busquets, D., Ruotolo, A., Innocenti, G., and Amigo, V., Insights into Pulsed Electrodeposition of GMR Multilayered Nanowires, J. Magn. Magn. Mater., 2007, vol. 316, pp. e242–e245.CrossRefGoogle Scholar
  206. 206.
    Evans, P.R., Yi, G., and Schwarzacher, W., Current Perpendicular to Plane Giant Magnetoresistance of Multilayered Nanowires Electrodeposited in Anodic Aluminum Oxide Membranes, Appl. Phys. Lett., 2000, vol. 76, pp. 481–484.CrossRefGoogle Scholar
  207. 207.
    Schwarzacher, W., Attenborough, K., Michel, A., Nabiyouni, G., and Meier, J.P., Electrodeposited Nanostructures, J. Magn. Magn. Mater., 1997, vol. 165, pp. 23–29.CrossRefGoogle Scholar
  208. 208.
    Schwarzacher, W., Kasyutich, O.I., Evans, P.R., Darbyshire, M.G., Yi, G., Fedosyuk, V.M., Rousseaux, F., Cambril, E., and Decanini, D., Metal Nanostructures Prepared by Template Electro-deposition, J. Magn. Magn. Mater., 1999, vols. 198–199, pp. 185–190.CrossRefGoogle Scholar
  209. 209.
    Wang, Y.W., Wang, G.Z., Wang, S.X., Gao, T., Sang, H., and Zhang, L.D., Fabrication and Magnetic Properties of Highly Ordered Co16Ag84 Alloy Nanowire Array, Appl. Phys. A, 2002, vol. 74, pp. 577–580.CrossRefGoogle Scholar
  210. 210.
    Wang, Y.W., Zhang, L.D., Meng, G.W., Peng, X.S., Jin, X.Y., and Zhang, J., Fabrication of Ordered Ferromagnetic-Nonmagnetic Alloy Nanowire Arrays and Their Magnetic Property Dependence on Annealing Temperature, J. Phys. Chem. B, 2002, vol. 106, pp. 2502–2507.CrossRefGoogle Scholar
  211. 211.
    Liu, Q.F., Gao, C.X., Xiao, J.J., and Xue, D.S., Size Effects on Magnetic Properties in Fe0.68 Ni0.32 Alloy Nanowire Arrays, J. Magn. Magn. Mater., 2003, vol. 260, pp. 151–155.CrossRefGoogle Scholar
  212. 212.
    Qin, D.H., Wang, C.W., Sun, Q.Y., and Li, H.L., The Effects of Annealing on the Structure and Magnetic Properties of CoNi Patterned Nanowire Arrays, Appl. Phys. A, 2002, vol. 74, pp. 761–765.CrossRefGoogle Scholar
  213. 213.
    Kazeminezhad, I. and Schwarzacher, W., Electrodeposition of NiCu Alloy Nanowires with Arbitrary Composition, Electrochem. Solid-State Lett., 2004, vol. 11, pp. K24–K26.CrossRefGoogle Scholar
  214. 214.
    Huang, Q., Davis, D., and Podlaha, E.J., Electrodeposition of FeCoNiCu Nanowires, J. Appl. Electrochem., 2006, vol. 36, pp. 871–882.CrossRefGoogle Scholar
  215. 215.
    Gupta, M. and Podlaha, E.J., Electrodeposition of CuNiW Alloys: Thin Films, Nanostructured Multilayers and Nanowires, J. Appl. Electrochem., 2010, vol. 40, pp. 1429–1439.CrossRefGoogle Scholar
  216. 216.
    Bairachna, T., Fowle, W., and Podlaha, E.J., Electrochemically Fabricated Nickel-Tungsten Nanowires, ECS Transactions, 220th Meeting of The Electrochemical Society, Boston, MA, Oct, 2011.Google Scholar
  217. 217.
    Davis, D., Zamanpour, M., Moldovan, M., Young, D., and Podlaha, E.J., Electrodeposited, GMR CoNi-FeCu Nanowires and Nanotubes from Electrolytes Maintained at Different Temperatures, J. Electrochem. Soc., 2010, vol. 157, pp. D317–D322.CrossRefGoogle Scholar
  218. 218.
    Davis, D., Moldovan, M., Young, D., Xie, X., Henk, M., and Podlaha, E.J., Magnetoresistance in Electrodeposited CoNiFe/Cu Multilayered Nanotubes Electrochemical/Chemical Deposition and Etching, Electrochem. Solid-State Lett., 2006, vol. 9, pp. C153–C155.CrossRefGoogle Scholar
  219. 219.
    Pinisetty, D., Davis, D., Podlaha-Murphy, E.J., Murphy, M.C., Karki, A.B., Young, D.P., and Devireddy, R.V., Characterization of Electrodeposited Bismuth-Tellurium Nanowires and Nanotubes, Acta Mater., 2011, vol. 59, pp. 2455–2461.CrossRefGoogle Scholar
  220. 220.
    Fukunaka, Y., Motoyama, M., Konishi, Y., and Ishii, R., Producing Shape-Controlled Metal Nanowires and Nanotubes by an Electrochemical Method Electrochemical/Chemical Deposition and Etching, Electrochem. Solid-State Lett., 2006, vol. 9, pp. C62–C64.CrossRefGoogle Scholar
  221. 221.
    Verbeeck, J., Lebedev, O.I., Van Tendeloo, G., Cagnon, L., and Bougerol, C., Fe and Co Nanowires and Nanotubes Synthesized by Template Electrodeposition: A HRTEM and EELS Study, J. Electrochem. Soc., 2003, vol. 150, pp. E468–E471.CrossRefGoogle Scholar

Copyright information

© Allerton Press, Inc. 2012

Authors and Affiliations

  • N. Tsyntsaru
    • 1
    • 2
  • H. Cesiulis
    • 3
  • M. Donten
    • 4
  • J. Sort
    • 5
  • E. Pellicer
    • 6
  • E. J. Podlaha-Murphy
    • 7
  1. 1.Department MTMKatholieke Universiteit LeuvenLeuvenBelgium
  2. 2.Institute of Applied PhysicsAcademy of Sciences of MoldovaChisinauMoldova
  3. 3.Dept. Phys. Chem.Vilnius UniversityVilniusLithuania
  4. 4.Faculty of ChemistryUniversity of WarsawWarsawPoland
  5. 5.Institució-Catalana de Recerca i Estudis Avançcats (ICREA) and Departament de FìsicaUniversitat Autònoma de BarcelonaBellaterraSpain
  6. 6.Departament de FìsicaUniversitat Autònoma de BarcelonaBellaterraSpain
  7. 7.Department of Chemical EngineeringNortheastern UniversityBostonUSA

Personalised recommendations