Skip to main content
Log in

Atmospheric Concentration of Carbon Dioxide at Tiksi and Cape Baranov Stations in 2010–2017

  • Published:
Russian Meteorology and Hydrology Aims and scope Submit manuscript

Abstract

The study presents the results of continuous measurements of carbon dioxide concentration in the atmospheric surface layer at Tiksi and Cape Baranov Arctic stations over the period of August 2010–May 2017 and over the whole 2016, respectively. The amplitude of diurnal variations in the CO2 concentration in Tiksi from June to September is 1.1 ± 1.3, 2.4 ± 2.0, 4.1 ± 2.3, and 2.0 ± 2.4 ppm. Diurnal variations in CO2 at Cape Baranov station are absent. The observed seasonal variations in the CO2 concentration are compared with the data of the MBL empirical model for the marine atmospheric boundary layer of the Arctic region. In 2016, the difference between the observed and model concentrations at Tiksi and Cape Baranov stations amounted to 1.7 and 0.5 ppm, respectively, in winter and −3.0 and −1.9 ppm, respectively, in summer. It is shown that wildfires in Siberia caused a long synchronous increase in the CO2 concentration by 20 ppm in Tiksi and by 15 ppm at Cape Baranov station.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. E. Ivanov, A. P. Makshtas, S. V. Shutilin, and R. M. Gunn, “Long-term Variability of Climatic Characteristics in the Area of Tiksi Hydrometeorological Observatory,” Problemy Arktiki i Antarktiki, No. 1, 81 (2009) [in Russian].

    Google Scholar 

  2. A. P. Makshtas and V. T. Sokolov, “Cap Baranov Ice Base Research Station: Summer Field Season of 2014,” Rossiiskie Polyarnye Issledovaniya, No. 3 (2014) [in Russian].

  3. T. Aalto, J. Hatakka, and M. Lallo, “Tropospheric Methane in Northern Finland: Seasonal Variations, Transport Patterns and Correlations with Other Trace Gases,” Tellus B, No. 2, 59 (2007).

    Google Scholar 

  4. A. E. Andrews, J. D. Kofler, M. E. Trudeau, J. C. Williams, D. H. Neff, K. A. Masarie, D. Y. Chao, D. R. Kitzis, P. C. Novelli, C. L. Zhao, E. J. Dlugokencky, P. M. Lang, M. J. Crotwell, M. L. Fischer, M. J. Parker, J. T. Lee, D. D. Baumann, A. R. Desai, C. O. Stanier, S. F. J. de Wekker, D. E. Wolfe, J. W. Munger, and P. P. Tans, “CO2, CO, and CH4 Measurements from Tall Towers in the NOAA Earth System Research Laboratory’s Global Greenhouse Gas Reference Network: Instrumentation, Uncertainty Analysis, and Recommendations for Future High-accuracy Greenhouse Gas Monitoring Efforts,” Atmos. Meas. Techn., No. 2, 7 (2014).

    Google Scholar 

  5. J. Barichivich, K. R. Briffa, T. J. Osborn, T. M. Melvin, and J. Caesar, “Thermal Growing Season and Timing of Biospheric Carbon Uptake across the Northern Hemisphere,” Global Biogeochem. Cycles, 26 (2012).

  6. F. M. Breon, G. Broquet, V. Puygrenier, F. Chevallier, I. Xueref-Remy, M. Ramonet, E. Dieudonne, M. Lopez, M. Schmidt, O. Perrussel, and P. Ciais, “An Attempt at Estimating Paris Area CO2 Emissions from Atmospheric Concentration Measurements,” Atmos. Chem. Phys., No. 4, 15 (2015).

    Google Scholar 

  7. R. R. Draxler and G. Hess, An Overview of the HYSPLIT_4 Modeling System for Trajectories, Dispersion, and Deposition (1998).

    Google Scholar 

  8. Global Forest Watch Fires, http://fires.globalforestwatch.org/home/ (Access Date December 14, 2018).

  9. J. Kilkki, T. Aalto, J. Hatakka, H. Portin, and T. Laurila, “Atmospheric CO2 Observations at Finnish Urban and Rural Sites,” Boreal Environ. Res., No. 2, 20 (2015).

    Google Scholar 

  10. C. le Quere, R. M. Andrew, P. Friedlingstein, et al., “Global Carbon Budget 2017,” Earth System Science Data, No. 1, 10 (2018).

    Google Scholar 

  11. M. C. Mack, M. S. Bret-Harte, T. N. Hollingsworth, R. R. Jandt, E. A. G. Schuur, G. R. Shaver, and D. L. Verbyla, “Carbon Loss from an Unprecedented Arctic Tundra Wildfire,” Nature, 475 (2011).

  12. Ministry for the Environment New Zealand’s Greenhouse Gas Inventory 1990–2016 (2018).

  13. S. Piao, Z. Liu, Y. Wang, P. Ciais, Y. Yao, S. Peng, F. Chevallier, P. Friedlingstein, I. A. Janssens, J. Penuelas, S. Sitch, and T. Wang, “On the Causes of Trends in the Seasonal Amplitude of Atmospheric CO2,” Global Change Biol., No. 2, 24 (2018).

    Google Scholar 

  14. Weather and Climate, http://www.pogodaiklimat.ru/climate/21824.htm (Access Date January 21, 2019).

  15. F. Reum, M. Gockede, J. V. Lavric, O. Kolle, S. Zimov, N. Zimov, M. Pallandt, and M. Heimann, “Accurate Measurements of Atmospheric Carbon Dioxide and Methane Mole Fractions at the Siberian Coastal Site Ambarchik,” Atmos. Meas. Techn. Discussions, 2018 (2018).

  16. E. A. G. Schuur, A. D. McGuire, C. Schadel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D. Koven, P. Kuhry, D. M. Lawrence, S. M. Natali, D. Olefeldt, V. E. Romanovsky, K. Schaefer, M. R. Turetsky, C. C. Treat, and J. E. Vonk, “Climate Change and the Permafrost Carbon Feedback,” Nature, No. 7546, 520 (2015).

    Google Scholar 

  17. B. B. Stephens, G. W. Brailsford, A. J. Gomez, K. Riedel, S. E. Mikaloff Fletcher, S. Nichol, and M. Manning, “Analysis of a 39-year Continuous Atmospheric CO2 Record from Baring Head, New Zealand,” Biogeosciences, No. 4, 10 (2013).

    Google Scholar 

  18. P. Sturm, B. Tuzson, S. Henne, and L. Emmenegger, “Tracking Isotopic Signatures of CO2 at the High Altitude Site Jungfraujoch with Laser Spectroscopy: Analytical Improvements and Representative Results,” Atmos. Meas. Techn., No. 7, 6 (2013).

    Google Scholar 

  19. K. W. Thoning, P. P. Tans, and W. D. Komhyr, “Atmospheric Carbon Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985,” J. Geophys. Res. Atmospheres, No. D6, 94 (1989).

    Google Scholar 

  20. A. V. Timokhina, A. S. Prokushkin, A. V. Panov, R. A. Kolosov, N. V. Sidenko, J. Lavric, and M. Heimann, “Interannual Variability of Atmospheric CO2 Concentrations over Central Siberia from ZOTTO Data for 2009–2015,” Meteorol. Gidrol., No. 5 (2018) [Russ. Meteorol. Hydrol., No. 5, 43 (2018)].

  21. US Department of Commerce N. ESRL Global Monitoring Division-Global Greenhouse Gas Reference Network: CCGCRV, https://www.esrl.noaa.gov/gmd/ccgg/mbl/crvfit/crvfit.html (Access Date January 7, 2019).

  22. US Department of Commerce N. ESRL Global Monitoring Division–Global Greenhouse Gas Reference Network: MBL, https://www.esrl.noaa.gov/gmd/ccgg/mbl/mbl.html (Access Date January 7, 2019).

  23. S. Wenzel, P. M. Cox, V. Eyring, and P. Friedlingstein, “Projected Land Photosynthesis Constrained by Changes in the Seasonal Cycle of Atmospheric CO2,” Nature, No. 7626, 538 (2016).

    Google Scholar 

  24. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2015–2016.

  25. WMO Greenhouse Gas Bulletin: The State of Greenhouse Gases in the Atmosphere Based on Global Observations through 2017–2018.

  26. L. Wu, G. Broquet, P. Ciais, V. Bellassen, F. Vogel, F. Chevallier, I. Xueref-Remy, and Y. Wang, “What Would Dense Atmospheric Observation Networks Bring to the Quantification of City CO2 Emissions?”, Atmos. Chem. and Phys., No. 12, 16 (2016).

    Google Scholar 

  27. S. Yasunaka, E. Siswanto, A. Olsen, M. Hoppema, E. Watanabe, A. Fransson, M. Chierici, A. Murata, S. K. Lauvset, R. Wanninkhof, T. Takahashi, N. Kosugi, A. M. Omar, S. van Heuven, and J. T. Mathis, “Arctic Ocean CO2 Uptake: An Improved Multiyear Estimate of the Air–Sea CO2 Flux Incorporating Chlorophyll a Concentrations,” Biogeosciences, No. 6, 15 (2018).

    Google Scholar 

  28. Y. Yuan, L. Ries, H. Petermeier, M. Steinbacher, A. J. Gymez-Pelaez, M. C. Leuenberger, M. Schumacher, T. Trickl, C. Couret, F. Meinhardt, and A. Menzel, “Adaptive Selection of Diurnal Minimum Variation: A Statistical Strategy to Obtain Representative Atmospheric CO2 Data and Its Application to European Elevated Mountain Stations,” Atmos. Meas. Techn., No. 3, 11 (2018).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. M. Ivakhov.

Additional information

Russian Text © V.M. Ivakhov, N.N. Paramonova, V.I. Privalov, A.V. Zinchenko, M.A. Loskutova, A.P. Makshtas, V.Y. Kustov, T. Laurila, M. Aurela, E. Asmi, 2019, published in Meteorologiya i Gidrologiya, 2019, No. 4, pp. 110–121.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ivakhov, V.M., Paramonova, N.N., Privalov, V.I. et al. Atmospheric Concentration of Carbon Dioxide at Tiksi and Cape Baranov Stations in 2010–2017. Russ. Meteorol. Hydrol. 44, 291–299 (2019). https://doi.org/10.3103/S1068373919040095

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3103/S1068373919040095

Keywords

Navigation