Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 12, pp 852–861 | Cite as

Peculiarities of Dense Water Cascading off the Deep Part of Antarctic Continental Slope (A Case Study for the Commonwealth Sea)

  • P. N. GolovinEmail author
  • N. N. Antipov
  • A. V. Klepikov
Article

Abstract

The developed approach to the calculation and construction of adequate local and common fields of potential density for the whole continental slope (to 2000 m) allows the representative detailed analysis of the downflow of cold and dense shelfwaters in all parts ofthe slope (cascading) in the Commonwealth Sea including the poorly explored deep part. Most often the slope cascading is manifested in the form of discrete meanders (in the steep part of the slope) or discrete plumes (both in the steep and deep parts). More rarely, it occurs in the form of intrusions and eddies (lenses). The pattern and stability of cascading depend on the slope steepness. The detected local irregularities of bottom topography also affect the cascading: they lead to the instability of density flows, intrusive layering, and eddy formation.

Keywords

Antarctic continental slope dense water cascading deep water cascading conditional potential density meander plume intrusion eddy lense 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. N. Antipov, A. I. Danilov, and A. V. Klepikov, “Circulation and Structure of Waters in the Western Weddell Sea from Weddell-1 Expedition Data,” in The Results of Antarctic Studies (Gidrometeoizdat, St. Petersburg, 1995) [in Russian].Google Scholar
  2. 2.
    N. N. Antipov and A. V. Klepikov, “On the Interaction of Waters on the Shelf and in the Deep Ocean over the Antarctic Continental Slope,” in Contribution of Russia to the International Polar Year 2007/08. Oceanography and Sea Ice, Ed. by I. E. Frolov (Paulsen, Moscow, 2011) [in Russian].Google Scholar
  3. 3.
    N. N. Antipov and A. V. Klepikov, “Oceanographic Conditions in the Prydz Bay from the 1997–2007 AARI Expedition Data,” Problemy Arktiki i Antarktiki, No. 2 (2007) [in Russian].Google Scholar
  4. 4.
    P. N. Golovin, “Conditions of the Formation and Runoff of Shelf Waters in Different Water Areas of the Arctic and Antarctic,” Meteorol. Gidrol., No. 12 (2012) [Russ. Meteorol. Hydrol., No. 11–12, 37 (2012)].Google Scholar
  5. 5.
    P. N. Golovin, N. N. Antipov, and A. V. Klepikov, “Intrusive Layering of the Antarctic Slope Front,” Okeanologiya, No. 4, 56 (2016) [Oceanology, No. 4, 56 (2016)].Google Scholar
  6. 6.
    P. N. Golovin, N. N. Antipov, and A. V. Klepikov, “Studying the Stability of the Antarctic Slope Front in the Commonwealth Sea,” Meteorol. Gidrol., No. 11 (2013) [Russ. Meteorol. Hydrol., No. 11, 38 (2013)].Google Scholar
  7. 7.
    P. N. Golovin, N. N. Antipov, and A. V. Klepikov, “Downflow of the Antarctic Shelf Water at the Shelf and Continental Slope of the Commonwealth Sea in the Summer Season and Its Effect on the Bottom Water Formation in the Southern Ocean,” Okeanologiya, No. 3, 51 (2011) [Oceanology, No. 3, 51 (2011)].Google Scholar
  8. 8.
    K. N. Fedorov, Physical Nature and Structure of Oceanic Fronts (Gidrometeoizdat, Leningrad, 1983) [in Russian].Google Scholar
  9. 9.
    P. G. Baines and S. A. Condie, “Observations and Modelling of Antarctic Downslope Flows: A Review,” in Ocean, Ice, and Atmosphere: Interactions at the Antarctic Continental Margin, Antarctic Res. Ser., 75 (1998).Google Scholar
  10. 10.
    E. Fahrbach, G. Rohardt, N. Scheele, M. Schroder, V. Strass, and A. Wisotzki, “Formation and Discharge of Deep and Bottom Water in the Northwestern Weddell Sea,” J. Marine Res., 53 (1995).Google Scholar
  11. 11.
    A. Foldvik, T. Gammelsrod, S. Osterhus, E. Fahrbach, G. Rohardt, M. Schroder, K. W. Nicholls, L. Padman, and R. A. Woodgate, “Ice Shelf Water Overflow and Bottom Water Formation in the Southern Weddell Sea,” J. Geophys. Res., 109 (2004).Google Scholar
  12. 12.
    A. Foldvik, T. Kvinge, and T. Torresen, “Bottom Currents near the Continental Shelf Break in the Weddell Sea,” in Oceanology of the Antarctic Continental Shelf, Antarctic Res. Ser., 43 (1985).Google Scholar
  13. 13.
    T. D. Foster and E. C. Carmack, “Frontal Zone Mixing and Antarctic Bottom Water Formation in the Southern Weddell Sea,” Deep Sea Res., 23 (1976).Google Scholar
  14. 14.
    T. D. Foster, A. Foldvik, and J. H. Middleton, “Mixing and Bottom Water Formation in the Shelf Break Region of the Southern Weddell Sea,” Deep Sea Res., No. 11, 34 (1987).Google Scholar
  15. 15.
    M. Hoppema, O. Klatt, W. Roether, E. Fahrbach, K. Bulsiewisz, C. Rodehacke, and G. Rohardt, “Prominent Renewal of Weddell Sea Deep Water from a Remote Source,” J. Marine Res., 59 (2001).Google Scholar
  16. 16.
    J. H. Middleton, T. D. Foster, and A. Foldvik, “Low-frequency Currents and Continental Shelf Waves in the Southern Weddell Sea,” J. Phys. Oceanog., 12 (1982).Google Scholar
  17. 17.
    R. D. Muench and A. L. Gordon, “Circulation and Transport of Water Along the Western Weddell Sea Margin,” J. Geophys. Res., 100 (1995).Google Scholar
  18. 18.
    G. P. Williams, L. Herraiz-Borreguero, F. Roquet, T. Tamura, K. I. Ohshima, Y. Fukamachi, A. D. Fraser, L. Gao, H. Chen, C. R. McMahon, R. Harcourt, and M. Hindell, “The Suppression of Antarctic Bottom Water Formation by Melting Ice Shelves in Prydz Bay,” Nature Communications, 7 (2016).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • P. N. Golovin
    • 1
    Email author
  • N. N. Antipov
    • 1
  • A. V. Klepikov
    • 1
  1. 1.Arctic and Antarctic Research InstituteSt. PetersburgRussia

Personalised recommendations