Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 12, pp 827–836 | Cite as

The Secondary Sea Level Maximum during Floods in Saint Petersburg and Its Simulation with Numerical Models

  • S. K. PopovEmail author
  • A. V. Gusev
  • V. V. Fomin
Article

Abstract

The study considered two- and three-dimensional models used to compute the Baltic Sea level. It is demonstrated for three floods that the BALT-P three-dimensional hydrodynamic model and the INMOM three-dimensional hydrothermodynamics model successfully simulate extreme sea level fluctuations during the floods in Saint Petersburg. To simulate extreme sea level fluctuations in the Baltic Sea, it is appropriate to use the BALT-P model which requires less input information. The analysis of simulation data for the considered cases reveals that the reason for the occurrence of the second flood maximum is the excitation of the wind-induced fundamental single-node seiche of the Baltic Sea.

Keywords

Baltic Sea sea level free fluctuations of sea level single-node seiche surge floods three-dimensional hydrodynamic model 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Averkiev and K. A. Klevannyi, “Determining Cyclone Trajectories and Velocities Leading to Extreme Sea Level Rises in the Gulf of Finland,” Meteorol. Gidrol., No. 8 (2007) [Russ. Meteorol. Hydrol., No. 8, 32 (2007)].Google Scholar
  2. 2.
    A. S. Averkiev and K. A. Klevannyi, “Calculation of Extreme Water Levels in the Eastern Part of the Gulf of Finland,” Meteorol. Gidrol., No. 11 (2009) [Russ. Meteorol. Hydrol., No. 11, 34 (2009)].Google Scholar
  3. 3.
    B. V. Arkhipov and S. K. Popov, “Modeling of Density and Wind Currents in the Southeastern Part of the Barents Sea,” Okeanologiya, No. 6, 36 (1996) [Oceanology, No. 6, 36 (1996)].Google Scholar
  4. 4.
    N. E. Vol’tsinger and R. V. Pyaskovskii, The Shallow Water Theory. Oceanological Problems and Numerical Methods (Gidrometeoizdat, Leningrad, 1977) [in Russian].Google Scholar
  5. 5.
    E. N. Dvorkin and I. M. Ashik, Numerical Hydrodynamic Method for Forecasting Sea Level Variations in the Gulf of Finland Taking into Account Ice Cover Effects (Saint Petersburg, 2000) [in Russian].Google Scholar
  6. 6.
    N. A. Dianskii, Ocean Circulation Modeling and Investigation of Ocean Response to Short- and Long-period Atmospheric Forcing (Fizmatlit, Moscow, 2013) [in Russian].Google Scholar
  7. 7.
    E. A. Zakharchuk, N. A. Tikhonova, A. V. Gusev, and N. A. Dianskii, “Comparison of Methods for Numerical Hydrodynamic Modeling of the Baltic Sea Level Fluctuations,” Trudy GOIN, No. 217 (2016) [in Russian].Google Scholar
  8. 8.
    K. A. Klevannyi, A. M. Kolesov, M.-S. Mostamandi, “Predicting the Floods in Saint Petersburg and the Eastern Part of the Gulf of Finland under Conditions of Operation of the Flood Prevention Facility Complex,” Meteorol. Gidrol., No. 2 (2015) [Russ. Meteorol. Hydrol., No. 2, 40 (2015)].Google Scholar
  9. 9.
    E. A. Kulikov and I. P. Medvedev, “Variability of the Baltic Sea Level and Floods in the Gulf of Finland,” Okeanologiya, No. 2, 53 (2013) [Oceanology, No. 2, 53 (2013)].Google Scholar
  10. 10.
    E. A. Kulikov and I. V. Fain, “Numerical Modeling the Baltic Sea Level Variability,” Vychislitel’nye Tekhnologii, Special Issue 2, 13 (2008) [in Russian].Google Scholar
  11. 11.
    E. A. Kulikov, I. V. Fain, and I. P. Medvedev, “Numerical Modeling of Anemobaric Fluctuations of the Baltic Sea Level,” Meteorol. Gidrol., No. 2 (2015) [Russ. Meteorol. Hydrol., No. 2, 40 (2015)].Google Scholar
  12. 12.
    S. K. Popov, O. I. Zil’bershtein, A. L. Lobov, and M. M. Chumakov, “Simulation of Seasonal Variations of the Caspian Sea Level Using Parallel Computations,” Meteorol. Gidrol., No. 12 (2009) [Russ. Meteorol. Hydrol., No. 12, 34 (2009)].Google Scholar
  13. 13.
    S. K. Popov and A. L. Lobov, “Hydrodynamic Modeling of Foods in Saint Petersburg Considering the Operating Dam,” Meteorol. Gidrol., No. 4 (2017) [Russ. Meteorol. Hydrol., No. 4, 42 (2017)].Google Scholar
  14. 14.
    S. K. Popov, A. L. Lobov, and V. V. Elisov, “Saint Petersburg Flood Simulation with the BALT-P Three-dimensional Baroclinic Model,” Trudy Gidromettsentra Rossii, No. 354 (2015) [in Russian].Google Scholar
  15. 15.
    S. K. Popov, A. L. Lobov, V. V. Elisov, and V. I. Batov, “A Tide in the Operational Model for Short-range Forecast of Current Velocity and Sea Level in the Barents and White Seas,” Meteorol. Gidrol., No. 6 (2013) [Russ. Meteorol. Hydrol., No. 6, 38 (2013)].Google Scholar
  16. 16.
    RD 52.27.759–2011. Manual for the Forecast Service, Section 3, Part III: Marine Hydrological Forecast Service (Triada Ltd, Moscow, 2011) [in Russian].Google Scholar
  17. 17.
    V. V. Fomin and N. A. Dianskii, “Simulation of Extreme Surges in the Taganrog Bay with Ocean and Atmosphere Circulation Models,” Meteorol. Gidrol., No. 12 (2018) [Russ. Meteorol. Hydrol., No. 12, 43 (2018)].Google Scholar
  18. 18.
    N. G. Yakovlev, “Reproduction of the Large-scale State of Water and Sea Ice in the Arctic Ocean in 1948–2002. Part I: Numerical Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 3, 45 (2009) [Izv., Atmos. Oceanic Phys., No. 3, 45 (2009)].Google Scholar
  19. 19.
    J. O. Backhous, “A Three-dimensional Model for the Simutation of Shelf-sea Dynamics,” Dtsch. Hydrogr. Z., No. 4, 38 (1985).Google Scholar
  20. 20.
    D. Brydon, S. San, and R. Bleck, “A New Approximation of the Equation of State for Seawater, Suitable for Numerical Ocean Models,” J. Geophys. Res., No. C1, 104 (1999).Google Scholar
  21. 21.
    L. H. Holthuijsen, M. D. Powell, and J. D. Pietrzak, “Wind and Waves in Extreme Hurricanes,” J. Geophys. Res., 117 (2012).Google Scholar
  22. 22.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, C. R. Paver, J. R. Reagan, D. R. Johnson, M. Hamilton, and D. Seidov, World Ocean Atlas 2013, Vol. 1: Temperature, Ed. by S. Levitus (NOAA Atlas NESDIS 73, 2013).Google Scholar
  23. 23.
    W. C. Skamarock, J. B. Klemp, J. Dudhia, D. O. Gill, D. M. Barker, M. G. Duda, X.-Y. Huang, W. Wang, and J. G. Powers, A Description of the Advanced Research WRF Ver. 3, NCAR Technical Note (2008).Google Scholar
  24. 24.
    E. Zakharchuk, N. Tikhonova, A. Gusev, and N. Diansky, “Influence of Baroclinicity on Sea Level Oscillations in the Baltic Sea,” in Physical and Mathematical Modeling of Earth and Environment Processes (PMMEEP), Ed. by V. Karev, D. Klimov, and K. Pokazeev (Springer, Cham, 2018).Google Scholar
  25. 25.
    M. M. Zweng, J. R. Reagan, J. I. Antonov, R. A. Locarnini, A. V. Mishonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, D. R. Johnson, D. Seidov, and M. M. Biddle, World Ocean Atlas 2013, Vol. 2: Salinity, Ed. by S. Levitus (NOAA Atlas NESDIS 74, 2013).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  2. 2.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  3. 3.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  4. 4.Zubov State Oceanographic InstituteMoscowRussia

Personalised recommendations