Spatial and Temporal Features of Synoptic and Mesoscale Variability of the Baltic Sea Level
Abstract
The spatial and temporal features of synoptic and mesoscale variability of the Baltic Sea level are studied using long-term hourly data. The spectral analysis revealed significant difference in the structure of the sea level spectra between the Gulf of Bothnia and the Gulf of Finland. The maximum variance of the synoptic sea level variability is observed at the head of the Gulf of Bothnia and in the southwestern part of the Baltic Sea, whereas the maximum variance of mesoscale variability is registered at the head of the Gulf of Finland and in the southwestern part of the sea. The minimum variance of synoptic sea level variability was observed in the Gulf of Bothnia in the 1950s–1960s, and the maximum was recorded at the beginning and at the end of the 20th century. The series of interdecadal variability of synoptic sea level fluctuations have a weak negative trend up to −0.11 cm2/year in Kungsholmfrost. A significant qualitative and quantitative correlation was detected between the interannual variability of variance of mesoscale sea level variations in the Gulf of Finland (Gornyi Institut) and the Gulf of Riga (Parnu) and the interannual variability of the NAO index.
Keywords
Baltic Sea sea level fluctuations synoptic variability mesoscale variability sea level variability spectrum numerical simulation seiches storm surges North Atlantic OscillationPreview
Unable to display preview. Download preview PDF.
References
- 1.V. Kh. German and S. P. Levikov, Probability Analysis and Modeling of Sea Level Fluctuations (Gidrometeoizdat, Leningrad, 1988) [in Russian].Google Scholar
- 2.Hydrometeorology and Hydrochemistry of the USSR Seas. “The USSR Seas ” Project, Vol. 3: The Baltic Sea, 1: Hydrometeorological Conditions, Ed. by F. S. Terziev, V. A. Rozhkov, and A. I. Smirnova (Gidrometeoizdat, St. Petersburg, 1992) [in Russian].Google Scholar
- 3.A. K. Gusev, E. A. Zakharchuk, N. E. Ivanov, Yu. P. Klevantsov, V. A. Rozhkov, N. A. Tikhonova, and V. R. Fuks, The Dynamics of the Baltic Sea Water in the Synoptic Range of Spatiotemporal Scales (Gidrometeoizdat, St. Petersburg, 2007) [in Russian].Google Scholar
- 4.E. A. Zakharchuk, V. N. Sukhachev, and N. A. Tikhonova, “The Reasons for Increase in the Neva River Flood Frequency in Recent Decades,” Meteorol. Gidrol., No. 1 (2015) [Russ. Meteorol. Hydrol., No. 1, 40 (2015)].Google Scholar
- 5.E. A. Zakharchuk and N. A. Tikhonova, “On the Spatiotemporal Structure and Mechanisms of the Neva River Flood Formation,” Meteorol. Gidrol., No. 8 (2011) [Russ. Meteorol. Hydrol., No. 8, 36 (2011)].Google Scholar
- 6.E. A. Kulikov and I. P. Medvedev, “Variabilty of the Baltic Sea Level and Floods in the Gulf of Finland,” Okeanologiya, No. 2, 53 (2013) [Oceanology, No. 2, 53 (2013)].Google Scholar
- 7.E. A. Kulikov and I. V. Fain, “Modeling the Baltic Sea Level Variability,” Vychislitel’nye Tekhnologii, Special Is sue 2, 13 (2008).Google Scholar
- 8.E. A. Kulikov, I. V. Fain, and I. P. Medvedev, “Numerical Modeling of Anemobaric Fluctuations ofthe Baltic Sea Level,” Meteorol. Gidrol., No. 2 (2015) [Russ. Meteorol. Hydrol., No. 2, 40 (2015)].Google Scholar
- 9.I. P. Medvedev, “Formation of the Baltic Sea Level Spectrum,” Dokl. Akad. Nauk, No. 3, 463 (2015) [Dokl. Earth Sci., No. 1, 463 (2015)].Google Scholar
- 10.I. P. Medvedev, A. B. Rabinovich, and E. A. Kulikov, “Tidal Oscillations in the Baltic Sea,” Okeanologiya, No. 5, 53 (2013) [Oceanology, No. 5, 53 (2013)].Google Scholar
- 11.A. S. Monin, V. M. Kamenkovich, and V. G. Kort, Variability ofthe World Ocean (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
- 12.E. S. Nesterov, The North Atlantic Oscillation: The Atmosphere and the Ocean (Triada LTD, Moscow, 2013) [in Russian].Google Scholar
- 13.V. E. Prival’skii, “On Forced Fluctuations of the Baltic Sea Level,” Okeanologiya, No. 2, 8 (1968) [in Russian].Google Scholar
- 14.V. E. Prival’skii, “On the Spectrum of Irregular Sea Level Fluctuations,” Trudy GOIN, No. 103 (1970) [in Russian].Google Scholar
- 15.H. C. Anderson, “Influence of Long-term Regional and Large-scale Atmospheric Circulation on the Baltic Sea Level,” Tellus A, 54 (2002).Google Scholar
- 16.A. S. Averkiev and K. A. Klevannyy, “A Case Study of the Impact of Cyclonic Trajectories on Sea-level Extremes in the Gulf of Finland,” Cont. Shelf Res., 30 (2010).Google Scholar
- 17.A. Bastos, R. Trigo, and S. M. Barbosa, “Discrete Wavelet Analysis of the Influence of the North Atlantic Oscillation on Baltic Sea Level,” Tellus A, 65 (2013).Google Scholar
- 18.H. Heyen, E. Zorita, and H. Storch, “Statistical Downscaling of Monthly Mean North Atlantic Air-pressure to Sea Level Anomalies in the Baltic Sea,” Tellus A, 48 (1996).Google Scholar
- 19.B. Hunicke and E. Zorita, “Trends in the Amplitude of Baltic Sea Level Annual Cycle,” Tellus A, 60 (2008).Google Scholar
- 20.B. Hunicke, E. Zorita, T. Soomere, K. S. Madsen, M. Johansson, and U. Suursaar, “Recent Change—Sea Level and Wind Waves,” in Second Assessment of Climate Change for the Baltic Sea Basin, Regional Climate Studies, Ed. by the BACC II Author Team (Springer Int. Publ., 2015).Google Scholar
- 21.S. Jevrejeva, J. C. Moore, P. L. Woodworth, and A. Grinsted, “Influence of Large-scale Atmospheric Circulation on European Sea Level: Results Based on the Wavelet Transform Method,” Tellus A, 57 (2005).Google Scholar
- 22.M. Johansson, H. Boman, K. K. Kahma, and J. Launiainen, “Trends in Sea Level Variability in the Baltic Sea,” Boreal Environ. Res., No. 3, 6 (2001).Google Scholar
- 23.M. M. Johansson, H. Pellikka, K. K. Kahma, and K. Ruosteenoja, “Global Sea Level Rise Scenarios Adapted to the Finnish Coast,” J. Marine Systems, 129 (2014).Google Scholar
- 24.B. Jonsson, K. Doos, J. Nycander, and P. Lundberg, “Standing Waves in the Gulf of Finland and Their Relationship to the Basin-wide Baltic Seiches,” J. Geophys. Res., 113 (2008).Google Scholar
- 25.E. A. Kulikov, I. P. Medvedev, and K. P. Koltermann, “Baltic Sea Level Low-frequency Variability,” Tellus A, 67 (2015).Google Scholar
- 26.E. Lisitzin, Sea-Level Changes (Elsevier, Amsterdam, 1974).Google Scholar
- 27.L. Magaard and W. Krauss, “Spektren der Wasserstandsschwankungen der Ostsee in Jahre 1958,” Kiel. Meeresforsch., 22 (1966).Google Scholar
- 28.A. B. Rabinovich, “Seiches and Harbor Oscillations,” in Handbook ofCoastal and Ocean Engineering, Chapter 9, Ed. by Y. C. Kim (World Scientific Publ., Singapore, 2009).Google Scholar
- 29.S. Saha, S. Moorthi, H.-L. Pan, X. Wu, J. Wang, S. Nadiga, P. Tripp, R. Kistler, J. Woollen, D. Behringer, H. Liu, D. Stokes, R. Grumbine, G. Gayno, J. Wang, Y.-T. Hou, H. Chuang, H.-M. H. Juang, J. Sela, M. Iredell, R. Treadon, D. Kleist, P. van Delst, D. Keyser, J. Derber, M. Ek, J. Meng, H. Wei, R. Yang, S. Lord, H. van den Dool, A. Kumar, W. Wang, C. Long, M. Chelliah, Y. Xue, B. Huang, J.-K. Schemm, W. Ebisuzaki, R. Lin, P. Xie, M. Chen, S. Zhou, W. Higgins, C.-Z. Zou, Q. Liu, Y. Chen, Y. Han, L. Cucurull, R. W. Reynolds, G. Rutledge, and M. Goldberg, “The NCEP Climate Forecast System Reanalysis,” Bull. Amer. Meteorol. Soc., No. 8, 91 (2010).Google Scholar
- 30.A. F. Shchepetkin and J. C. McWilliams, “The Regional Ocean Modeling Syst em (ROMS): A Split-explicit, Free-surface, Topography-following-coordinate Oceanic Model,” Ocean Model., No. 4, 9 (2005).Google Scholar
- 31.C. Wubber and W. Krauss, “The Two-dimensional Seiches of the Baltic Sea,” Oceanologia Acta, No. 4, 2 (1979).Google Scholar
- 32.C. Wunsch, “Bermuda Sea-level in Relation to Tides, Weather and Baroclinic Fluctuations,” Rev. Geophys. Space Phys., No. 1, 10 (1972).Google Scholar