Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 12, pp 797–814 | Cite as

Marine Observational Systems as an Integral Part of Operational Oceanology: A Review

  • A. A. ZelenkoEmail author
  • Yu. D. Resnyanskii
Article

Abstract

The paper presents an overview of the current marine observational systems which provide primary information for operational monitoring and predicting the variability of the main hydrophysical fields on the scales from several tens to several thousand kilometers (of the order of the Rossby baroclinic deformation radius and higher). Such systems provide the regular implementation of oceanographic and marine meteorological observations, their rapid interpretation and delivery to users; this is a subject of a relatively new discipline, operational oceanology. The active development of this discipline during the recent two decades suggests that the forecasting of the marine environment state will eventually reach the same level of accuracy and reliability as in operational meteorology, a more successful and older discipline.

Keywords

Operational oceanology observations World Meteorological Organization information system global telecommunication system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Asmus and V. A. Krovotyntsev, “Assessment of Polar Ice Conditions Based on Okean Satellite Data,” in New Information Technologies and Remote Methods of Sectorial Monitoring of World Ocean Fishery Regions (VNIRO, Moscow, 1996) [in Russian].Google Scholar
  2. 2.
    V. V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, and A. S. Selivanov, “The Use of Okean Satellite Radar Data for Solving Problems of Hydrometeorology and Environmental Monitoring,” Issledovanie Zemli iz Kosmosa, No. 3 (2002) [in Russian].Google Scholar
  3. 3.
    V. V. Asmus, P. A. Nikitin, A. E. Popov, and Yu. G. Spiridonov, “Digital Processing of Radar Images Received from Kosmos-1500 Satellite,” Issledovanie Zemli iz Kosmosa, No. 3 (1985) [in Russian].Google Scholar
  4. 4.
    A. I. Burtsev, V. A. Krovotyntsev, M. Nazirov, P. A. Nikitin, and Yu. G. Spiridonov, “Radar Maps of the Arctic and Antarctica Based on Kosmos-1500 Satellite Data and Preliminary Results of Their Analysis,” Issledovanie Zemli iz Kosmosa, No. 3 (1985) [in Russian].Google Scholar
  5. 5.
    V. G. Grigorieva and S. I. Badulin, “Wind Wave Characteristics Based on Visual Observations and Satellite Altimetry,” Okeanologiya, No. 1, 56 (2016) [Oceanology, No. 1, 56 (2016)].Google Scholar
  6. 6.
    D. G. Gryazin, Computation and Designing of Buoys for Sea Wave Measurements (SPbGITMO(TU), St. Petersburg, 2000) [in Russian].Google Scholar
  7. 7.
    V. B. Zalesny, V. I. Agoshkov, V. P. Shutyaev, F. Le Dimet, and V. O. Ivchenko, “Numerical Modeling of Ocean Hydrodynamics with Variational Assimilation of Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].Google Scholar
  8. 8.
    A. A. Zelenko, R. M. Vil’fand, Yu. D. Resnyanskii, B. S. Strukov, M. D. Tsyrulnikov, and P. I. Svirenko, “An Ocean Data Assimilation System and Reanalysis of the World Ocean Hydrophysical Fields,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].Google Scholar
  9. 9.
    A. A. Zelenko, Yu. D. Resnyanskii, and B. S. Strukov, “Operational Oceanology at the Hydrometcenter of Russia: Current and Near Future Status,” Trudy GOIN, No. 216 (2015) [in Russian].Google Scholar
  10. 10.
    A. A. Zelenko, Yu. D. Resnyanskii, M. D. Tsyrul’nikov, B. S. Strukov, and P. I. Svirenko, “Monitoring of Largescale Structure of Ocean Hydrophysical Fields,” in Modern Problems of Ocean and Atmosphere Dynamics (Triada LTD, Moscow, 2010) [in Russian].Google Scholar
  11. 11.
    R. A. Ibraev, R. N. Khabeev, and K. V. Ushakov, “Eddy-Resolving 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  12. 12.
    M. N. Kaurkin, R. A. Ibrayev, and K. P. Belyaev, “ARGO Data Assimilation into the Ocean Dynamics Model with High Spatial Resolution Using Ensemble Optimal Interpolation (EnOI),” Okeanologiya, No. 6, 56 (2016) [Oceanology, No. 6, 56 (2016)].Google Scholar
  13. 13.
    G. K. Korotaev, Yu. B. Ratner, M. V. Ivanchik, A. L. Kholod, and A. M. Ivanchik, “Operational System for Diagnosis and Forecast of Hydrophysical Characteristics of the Black Sea,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 5, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 5, 52 (2016)].Google Scholar
  14. 14.
    V. A. Krovotyntsev and O. E. Milekhin, “Characteristics of Radar Backscattering of Arctic Sea Ice Derived from Okean-O1 Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 2 (1988) [in Russian].Google Scholar
  15. 15.
    V. A. Krovotyntsev, O. E. Milekhin, V. I. Popov, and Yu. G. Spiridonov, “Space Radar Observations of Ice Coast Dynamics and Iceberg Drift in the Antarctic,” Issledovanie Zemli iz Kosmosa, No. 4 (1991) [in Russian].Google Scholar
  16. 16.
    O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, M. I. Mityagina, A. I. Ginzburg, and N. A. Sheremet, Integrated Satellite Monitoring of Russian Seas (IKI RAN, Moscow, 2011) [in Russian].Google Scholar
  17. 17.
    K. V. Lebedev, “An Argo-based Model for Investigation of the Global Ocean (AMIGO),” Okeanologiya, No. 2, 56 (2016) [Oceanology, No. 2, 56 (2016)].Google Scholar
  18. 18.
    G. I. Marchuk, B. E. Paton, G. K. Korotaev, and V. B. Zalesny, “Data-computing Technologies: A New Stage in the Development of Operational Oceanography,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 6, 49 (2013) [Izv., Atmos. Oceanic Phys., No. 6, 49 (2013)].Google Scholar
  19. 19.
    A. S. Monin, V. M. Kamenkovich, and V. G. Kort, World Ocean Variability (Gidrometeoizdat, Leningrad, 1974) [in Russian].Google Scholar
  20. 20.
    S. V. Motyzhev, “Creation of Drifter Technology for the Ocean and the Atmosphere Monitoring,” Morskoi Gidrophyzicheskii Zhurnal, No. 6 (2016) [Phys. Oceanogr., No. 6 (2016)].Google Scholar
  21. 21.
    Manual on Codes. International Codes, Vols. 1.1 and 1.2, WMO-No. 306 (WMO, 2016), https://library.wmo.int/opac.Google Scholar
  22. 22.
    O. P. Nikitin and S. Yu. Kas’yanov, “On Drifter Observations of Currents and Temperature in the Barents and Kara Seas,” Trudy GOIN, No. 217 (2016) [in Russian].Google Scholar
  23. 23.
    O. P. Nikitin and S. Yu. Kas’yanov, “Surface Currents of the Norwegian and Greenland Seas,” Trudy GOIN, No. 216 (2015) [in Russian].Google Scholar
  24. 24.
    Space Radiolocation of the Earth Surface, Ed. by L. M. Mitnik and S. V. Viktorov (Gidrometeoizdat, Leningrad, 1990) [in Russian].Google Scholar
  25. 25.
    K. V. Lebedev, A. S. Sarkisyan, and O. P. Nikitin, “Comparative Analysis of the North Atlantic Surface Circulation Reproduced by Three Different Methods,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 4, 52 (2016)].Google Scholar
  26. 26.
    V. I. Solov’ev, L. A. Anekeeva, I. S. Solov’eva, and A. B. Uspenskii, “World Ocean Surface Temperature Mapping Based on Geostationary Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 3 (2001) [in Russian].Google Scholar
  27. 27.
    V. I. Solov’ev and A. B. Uspenskii, “Development of the System for Remote Determination of Water Surface Temperature from Satellite Data,” Trudy Gidromettsentra Rossii, No. 326 (1993) [in Russian].Google Scholar
  28. 28.
    V. I. Solov’ev and A. B. Uspenskii, “Current State and Prospects of Development of Remote Methods for Determination of Sea Surface Temperature from Space,” Issledovanie Zemli iz Kosmosa, No. 1 (1998) [in Russian].Google Scholar
  29. 29.
    Yu. G. Spiridonov, O. E. Milekhin, V. I. Popov, and E. A. Sizenova, “Automated Construction of Antarctica Radar Map,” Trudy GosNITsIPR, No. 33 (1989) [in Russian].Google Scholar
  30. 30.
    S. Abdalla, P. A. E. M. Janssen, and J.-R. Bidlot, “Jason-2 OGDR Wind and Wave Products: Monitoring, Validation and Assimilation,” Mar. Geodesy, 33 (2010).Google Scholar
  31. 31.
    S. Andersen, R. Tonboe, L. Kaleschke, G. Heygster, and L. T. Pedersen, “Intercomparison of Passive Microwave Sea Ice Concentration Retrievals over the High-concentration Arctic Sea Ice,” J. Geophys. Res., 112 (2007).Google Scholar
  32. 32.
    P. Bahurel, “Mercator Ocean Global to Regional Ocean Monitoring and Forecasting,” in Ocean Weather Forecasting: An Integrated View of Oceanography, Ed. by E. Chassignet and J. Verron (Springer Verlag, 2006).Google Scholar
  33. 33.
    M. A. Balmaseda, A. Vidard, and D. L. T. Anderson, “The ECMWF Ocean Analysis System: ORA-S3,” Mon. Wea. Rev., No. 8, 136 (2008).Google Scholar
  34. 34.
    V. Banzon, T. M. Smith, T. M. Chin, C. Liu, and W. Hankins, “A Long-term Record of Blended Satellite and in Situ Sea-surface Temperature for Climate Monitoring, Modeling and Environmental Studies,” Earth Syst. Sci. Data, 8 (2016).Google Scholar
  35. 35.
    E. Bernard, C. Meinig, V. V. Titov, K. O’Neil, R. Lawson, K. Jarrott, R. Dfiley, F. Nelson, S. Tinti, C. von Hillebrandt, and P. Koltermann, “Tsunami Resilient Communities,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  36. 36.
    L. Boehme, K. Kovacs, C. Lydersen, O. A. Nost, M. Biuw, J.-B. Charrassin, F. Roquet, G. Guinet, M. Meredith, K. Nicholls, S. Thorpe, D. P. Costa, B. Block, M. Hammill, G. Stenson, M. Muelbert, M. N. Bester, J. Plotz, H. Bornemann, M. Hindell, S. Rintoul, P. Lovell, and M. A Fedak, “Biologging in the Global Ocean Observing System,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  37. 37.
    B. Bourles, R. Lumpkin, M. J. McPhaden, F. Hernandez, P. Nobre, E. Campos, L. Yu, S. Planton, A. Busalacchi, A. D. Moura, J. Servain, and J. Trotte, “The PIRATA Program: History, Accomplishments, and Future Directions,” Bull. Amer. Meteorol. Soc., 89 (2008).Google Scholar
  38. 38.
    L.-A. Breivik, T. Carrieres, S. Eastwood, A. Fleming, F. Girard-Ardhuin, J. Karvonen, R. Kwok, W. N. Meier, M. Makynen, L. T. Pedersen, S. Sandven, M. Simile, and R. Tonboe, “Remote Sensing of Sea Ice,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  39. 39.
    L.-A. Breivik, S. Eastwood, O. Godrny, H. Schyberg, S. Andersen, and R. T. Tonboe, “Sea Ice Products for EUMETSAT Satellite Application Facility,” Can. J. Rem. Sens., No. 5, 27 (2001).Google Scholar
  40. 40.
    M. J. Carrier, H. Ngodock, S. Smith, G. Jacobs, P. Muscarella, T. Ozgokmen, B. Haus, and B. Lipphardt, “Impact of Assimilating Ocean Velocity Observations Inferred from Lagrangian Drifter Data Using the NCOM-4DVAR,” Mon. Wea. Rev., 142 (2014).Google Scholar
  41. 41.
    D. B. Chelton, J. C. Ries, B. J. Haines, L. L. Fu, and P. S. Callahan, “Satellite Altimetry,” in Satellite Altimetry and Earth Sciences, Ed. by L.-L. Fu and A. Cazenave (Academic Press, 2001).Google Scholar
  42. 42.
    L. Cheng, J. Abraham, G. Goni, T. Boyer, S. Wijffels, R. Cowley, V. Gouretski, F. Reseghetti, S. Kizu, S. Dong, F. Bringas, M. Goes, L. Houpert, J. Sprintall, and J. Zhu, “XBT Science: Assessment of Instrumental Biases and Errors,” Bull. Amer. Meteorol. Soc., No. 6, 97 (2016).Google Scholar
  43. 43.
    R. E. Davis, “Observing the General Circulation with Floats,” Deep-Sea Res., 38 (1991).Google Scholar
  44. 44.
    R. E. Davis, J. T. Sherman, and J. Dufour, “Profiling ALACEs and Other Advances in Autonomous Subsurface Floats,” J. Atmos. Ocean. Tech., 18 (2001).Google Scholar
  45. 45.
    R. E. Davis, D. C. Webb, L. A. Regier, and J. Dufour, “The Autonomous Lagrangian Circulation Explorer (ALACE),” J. Atmos. Ocean. Tech., 9 (1992).Google Scholar
  46. 46.
    P. Dexter, V. Determmerman, and B. Hillard, “The International Co-ordination of Ship of Opportunity Programmes for Operations and Research,” in Proceedings of Oceanology International 96: The Global Ocean— Towards Operational Oceanography, Vol. 3 (Spearhead Exhibitions, New Malden, 1996).Google Scholar
  47. 47.
    C. J. Donlon, M. Martin, J. Stark, J. Roberts-Jones, E. Fiedler, and W. Wimmer, “The Operational Sea Surface Temperature and Sea Ice Analysis (OSTIA) System,” Rem. Sens. Environ., 116 (2012).Google Scholar
  48. 48.
    M. Drinkwater, H. Bonekamp, P. Bontempi, B. Chapron, C. Donlon, J.-L. Fellous, P. Digiacomo, E. Harrison, P.-Y. Letraon, and S. Wilson, “Status and Outlook for the Space Component of an Integrated Ocean Observing System,” in Proceedings of OceanObs,09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  49. 49.
    R. E. Duerr, R. L. Weaver, and M. Kaminski, “Data Acceptance Procedures and Levels of Service at the National Snow and Ice Data Center,” in 2010 IEEE International Geoscience and Remote Sensing Symposium, 25–30 July 2010, Honolulu, HI, USA (IEEE, New York, 2010).Google Scholar
  50. 50.
    N. Ebuchi and H. Kawamura, “Validation of Wind Speeds and Significant Wave Heights Observed by the TOPEX Altimeter around Japan,” J. Oceanogr., No. 4, 50 (1994).Google Scholar
  51. 51.
    E. Freeman, S. D. Woodruff, S. J. Worley, S. J. Lubker, E. C. Kent, W. E. Angel, D. I. Berry, P. Brohan, R. Eastman, L. Gates, W. Gloeden, Z. Ji, J. Lawrimore, N. A. Rayner, G. Rosenhagen, and S. R. Smith, “ICOADS Release 3.0: A Major Update to the Historical Marine Climate Record,” Int. J. Climatol., 37 (2017).Google Scholar
  52. 52.
    Y. Fujii, J. Cummings, Y. Xue, A. Schiller, T. Lee, M. A. Balmaseda, E. Remy, S. Masuda, G. Brassington, O. Alves, D. Cornuelle, M. Martin, P. Oke, G. Smith, and X. Yang, “Evaluation of the Tropical Pacifc Observing System from the Ocean Data Assimilation Perspective,” Quart. J. Roy. Meteorol. Soc., 141 (2015).Google Scholar
  53. 53.
    F. Girard-Ardhuin, R. Ezraty, and D. Croize-Fillon, “Arctic and Antarctic Sea Ice Concentration and Sea Ice Drift Satellite Products at Ifremer/CERSAT,” Mercator-Ocean Quarterly Newsletter, No. 28 (2008).Google Scholar
  54. 54.
    G. Goni, D. Roemmich, R. Molinari, G. Meyers, C. Sun, T. Boyer, M. Baringer, V. Gouretski, P. DiNezio, F. Reseghetti, G. Vissa, S. Swart, R. Keeley, S. Garzoli, T. Rossby, C. Maes, and G. Reverdin, “The Ship of Opportunity Program,” in Proceedings of OceanObs09: Sustained Ocean Observations and Information for Soiety, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  55. 55.
    V. Gouretski and K. P. Koltermann, “How Much is the Ocean Really Warming?”, Geophys. Res. Lett., 34 (2007).Google Scholar
  56. 56.
    J. F. R. Gower, “Intercalibration of Wave and Wind Data from TOPEX/POSEIDON and Moored Buoys off the West Coast of Canada,” J. Geophys. Res., No. C2, 101 (1996).Google Scholar
  57. 57.
    S. K. Gulev, S. A. Josey, M. Bourassa, L.-A. Breivik, M. F. Cronin, C. Fairall, S. Gille, E. C. Kent, C. M. Lee, M. J. Mcphaden, P. M. S. Monteiro, U. Schuster, S. R. Smith, K. E. Trenberth, D. Wallace, and S. D. Woodruff, “Surface Energy, CO2 Fluxes and Sea Ice,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 1, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  58. 58.
    S. K. Gulev, V. Grigorieva, A. Sterl, and D. Woolf, “Assessment of the Reliability of Wave Observations from Voluntary Observing Ships: Insights from the Validation of a Global Wind Wave Climatology Based on Voluntary Observing Ship Data,” J. Geophys. Res., No. C7, 108 (2003).Google Scholar
  59. 59.
    L. E. Holthuijsen, Waves in Oceanic and Coastal Waters (Cambridge Univ. Press, New York, 2007).CrossRefGoogle Scholar
  60. 60.
    P. A. Hwang, W. J. Teague, G. A. Jacobs, and D. W. Wang, “A Statistical Comparison of Wind Speed, Wave Height and Wave Period Derived from Satellite Altimeters and Ocean Buoys in the Gulf of Mexico Region,” J. Geophys. Res., 103 (1998).Google Scholar
  61. 61.
    P. A. E. M. Janssen, S. Abdalla, H. Hersbach, and J.-R. Bidlot, “Error Estimation of Buoy, Satellite, and Model Wave Height Data,” J. Atmos. Ocean. Technol., 24 (2007).Google Scholar
  62. 62.
    O. M. Johannessen, S. Sandven, L. H. Pettersson, K. Kloster, T. Hamre, J. Solhaug, A. M. Volkov, V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, V. D. Grischenko, V. G. Smirnov, L. P. Bobylev, V. V. Melentyev, and V. Alexandrov, “ICEWATCH: Real-time Sea Ice Monitoring in the Northern Sea Eoute (a Cooperative Earth Observation Project between the Russian and the European Space Agencies),” Issledovanie Zemli iz Kosmosa, No. 2 (1988).Google Scholar
  63. 63.
    O. M. Johannessen, A. M. Volkov, L. P. Bobylev, V. D. Grischenko, S. Sandven, L. H. Pettersson, V. V. Melentyev, V. V. Asmus, O. E. Milekhin, V. A. Krovotyntsev, V. G. Smirnov, V. Alexandrov, G. Duchossois, V. Kozlov, G. Kohlhammer, and G. Solaas, “ICEWATCH: Real-time Sea-ice Monitoring in the Northern Sea Route (a Cooperative Earth Observation Project between the Russian and the European Space Agencies),” Earth Observation and Rem. Sens., 16 (2000).Google Scholar
  64. 64.
    G. C. Johnson and J. M. Lyman, “Oceanography: Where’s the Heat?”, Nature. Climate Change, 4 (2014).Google Scholar
  65. 65.
    G. C. Johnson, J. M. Lyman, and S. G. Purkey, “Informing Deep Argo Array Design Using Argo and Full-depth Hydrographic Section Data,” J. Atmos. Ocean. Technol., 32 (2015).Google Scholar
  66. 66.
    E. C. Kent and D. I. Berry, “Quantifying Random Measurement Errors in Voluntary Observing Ships’ Meteorological Observations,” Int. J. Climatol., No. 7, 25 (2005).Google Scholar
  67. 67.
    C. Koblinsky, P. Gaspar, and G. Lagerloef, The Future of Spaceborne Altimetry: Oceans and Climate Change (Joint Oceanographic Institutions Incorporated, Washington, D.C., 1992).Google Scholar
  68. 68.
    Y. Kuroda, TRITON: Present Status and Future Plan. Report for the International Workshop for Review of the Tropical Moored Buoy Network (JAMSTEC, 2002).Google Scholar
  69. 69.
    R. Kwok, A. Schweiger, D. A. Rothrock, S. Pang, and C. Kottmeier, “Sea Ice Motion from Satellite Passive Microwave Imagery Assessed with ERS SAR and Buoy Motions,” J. Geophys. Res., No. C4, 103 (1998).Google Scholar
  70. 70.
    A. K. Liu and D. J. Cavalieri, “On Sea Ice Drift from the Wavelet Analysis of the Defense Meteorological Satellite Program (DMSP) Special Sensor Microwave Imager (SSM/I) Data,” Int. J. Rem. Sens., No. 7, 19 (1998).Google Scholar
  71. 71.
    G. Love, “The Birth of the WMO Information System,” WMO Bull., No. 4, 55 (2006).Google Scholar
  72. 72.
    Manual on the Global Telecommunication System: Annex III to the WMO Technical Regulations, WMO-No. 386 (WMO, 2015 ed., updated in 2017).Google Scholar
  73. 73.
    M. J. Martin, A. Hines, and M. J. Bell, “Data Assimilation in the FOAM Operational Short-range Ocean Forecasting System: A Description of the Scheme and Its Impact,” Quart. J. Roy. Meteorol. Soc., 133 (2007).Google Scholar
  74. 74.
    N. A. Maximenko, P. P. Niiler, M.-H. Rio, O. Melnichenko, L. Centurion, D. Chambers, V. Zlotnicki, and B. Galperin, “Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques,” J. Atmos. Ocean. Technol., 26 (2009).Google Scholar
  75. 75.
    M. J. McPhaden, A. J. Busalacchi, R. Cheney, J. R. Donguy, K. S. Gage, D. Halpern, M. Ji, P. Julian, G. Meyers, G. T. Mitchum, P. P. Niiler, J. Picaut, R. W. Reynolds, N. Smith, and K. Takeuchi, “The Tropical Ocean-Global Atmosphere (TOGA) Observing System: A Decade of Progress,” J. Geophys. Res., 103 (1998).Google Scholar
  76. 76.
    M. McPhaden, K. Ando, B. Bourles, H. P. Freitag, R. Lumpkin, Y. Masumoto, V. S. N. Murty, P. Nobre, M. Ravichandran, J. Vialard, D. Vousden, and W. Yu, “The Global Tropical Moored Buoy Array,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  77. 77.
    M. J. McPhaden, G. Meyers, K. Ando, Y. Masumoto, V. S. N. Murty, M. Ravichandran, F. Syamsudin, J. Vialard, L. Yu, and W. Yu, “RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction,” Bull. Amer. Meteorol. Soc., 90 (2009).Google Scholar
  78. 78.
    C. Meinig, S. E. Stalin, A. I. Nakamura, and H. B. Milburn, Real-time Deep-Ocean Tsunami Measuring, Monitoring, and Reporting System: The NOAA DART II Description and Disclosure (NOAA, 2005), http://www.ndbc.noaa.gov/dart/dart_ii_description_6_4_05.pdf.Google Scholar
  79. 79.
    M. Merrifield, T. Aarup, A. Allen, A. Aman, P. Caldwell, E. Bradshaw, R. M. S. Fernandes, H. Hayashibara, F. Hernandez, B. Kilonsky, B. M. Miguez, G. Mitchum, B. P. Gomez, L. Rickards, D. Rosen, T. Schone, M. Szabados, L. Testut, P. Woodworth, G. W. Appelmann, and J. Zavala, “The Global Sea Level Observing System (GLOSS),” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  80. 80.
    P. Muscarella, M. J. Carrier, H. Ngodock, S. Smith, B. L. Lipphardt Jr., A. D. Kirwan Jr., and H. S. Huntley, “Do Assimilated Drifter Velocities Improve Lagrangian Predictability in an Operational Ocean Model?”, Mon. Wea. Rev., 143 (2015).Google Scholar
  81. 81.
    P. Oke, M. A. Balmaseda, M. Benkiran, J. A. Cummings, E. Dombrowsky, Y. Fujii, S. Guinehut, G. Larnicol, P.-Y. Le Traon, and M. J. Martin, “Observing System Evaluations Using GODAE Systems,” Oceanogr. Mag., No. 3, 22 (2009).Google Scholar
  82. 82.
    P. R. Oke, G. B. Brassington, D. A. Griffin, and A. Schiller, “The Bluelink Ocean Data Assimilation System (BODAS),” Ocean Model., 21 (2008).Google Scholar
  83. 83.
    A. Pascual, C. Boone, G. Larnicol, and P. Y. Le Traon, “On the Quality of Real-time Altimeter Gridded Fields: Comparison with in Situ Data,” J. Atmos. Ocean. Tech., 26 (2009).Google Scholar
  84. 84.
    I. Petiteville, P. Lecomte, S. Ward, G. Dyke, M. Steventon, and J. Harry, Satellite Earth Observation in Support of Climate Information Challenges. Special 2015 COP21 Edition (ESA-EOGB, 2015), http://eohandbook.com/cop21/files/CEOS_EOHB_2015_COP21.pdf.Google Scholar
  85. 85.
    N. Picot, K. Case, S. Desai, and P. Vincent, AVISO and PODAAC User Handbook. IGDR and GDR Jason Products, SMM-MU-M5-OP-13184-CN (AVISO), JPL D-21352 (PODAAC) (2003).Google Scholar
  86. 86.
    S. Pouliquen, C. Schmid, A. Wong, M. Belbeoch, and S. Guinehut, “Argo Data Management,” in Proceedings of OceanObs’ 09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  87. 87.
    Report on the Deep Argo Implementation Workshop, Hobart, May 5–7 2015, http://www.argo.ucsd.edu/DAIW1report.pdf.Google Scholar
  88. 88.
    R. W. Reynolds, T. M. Smith, C. Liu, D. B. Chelton, K. S. Casey, and M. G. Schlax, “Daily High-resolutionblended Analyses for Sea Surface Temperature,” J. Climate, 20 (2007).Google Scholar
  89. 89.
    I. S. Robinson, Measuring the Oceans from Space: The Principles and Methods of Satellite Oceanography (Springer/Praxis, Berlin, 2004).Google Scholar
  90. 90.
    D. Roemmich, O. Boebel, Y. Desaubies, H. Freeland, K. Kim, B. King, P.-Y. Le Traon, R. Molinari, W. B. Owens, S. Riser, U. Send, K. Takkeuchi, and S. Wijiffels, “Argo: The Global Array of Profiling Floats,” in Observing the Oceans in the 21st Century, Ed. by C. J. Koblinsky and N. R. Smith (GODAE Project Office and Bureau of Meteorology, Melbourne, 1998).Google Scholar
  91. 91.
    D. Roemmich, O. Boebel, H. Freeland, B. King, P.-Y. Le Traon, R. Molinari, W. B. Owens, S. Riser, U. Send, K. Takkeuchi, and S. Wijiffels, On the Design and Implementation of Argo: An Initial Plan for a Global Array of Profiling Floats, Int. CLIVAR Project Office Report 21, GODAE Report 5 (GODAE International Project Office, Melbourne, Australia, 1998).Google Scholar
  92. 92.
    C. Solvsteen and C. Hansen, Validation of the Operational Wave Models WAVEWATCH-III and Mike21-OSW against Satellite Altimetry and Coastal Buoys (Royal Danish Administration of Navigation and Hydrography NR K.4, March 2006).Google Scholar
  93. 93.
    K. Steffen and A. J. Schweiger, “NASA Team Algorithm for Sea Ice Concentration Retrieval from Defense Meteorological Satellite Program Special Sensor Microwave Imager: Comparison with Landsat Satellite Imagery,” J. Geophys. Res., No. C12, 96 (1991).Google Scholar
  94. 94.
    V. Swail, R. Jensen, B. Lee, J. Turton, J. Thomas, S. Gulev, and M. Yelland, “Wave Measurements, Needs and Developments for the Next Decade,” in Proceedings of OceanObs’09: Sustained Ocean Observations and Information for Society, Venice, Italy, 21–25 September 2009, Vol. 2, Ed. by J. Hall, D. E. Harrison, and D. Stammer, ESA Publication WPP-306 (2010).Google Scholar
  95. 95.
    J. C. Swallow, “A Neutral-buoyancy Float for Measuring Deep Currents,” Deep-Sea Res., 3 (1955).Google Scholar
  96. 96.
    F. L. Sybrandy, P. P. Niiler, C. Martin, W. Scuba, E. Charpentier, and D. T. Meldrum, Barometer Drifter Design Reference, Global Drifter Program, DBCP Report No. 4, Revision 2.2 (2009), http://www.jcommops.org/doc/DBCP/svpb_design_manual.pdf.Google Scholar
  97. 97.
    H. L. Tolman, Validation of WAWEWATCH III Version 1.15 for a Global Domain, NOAA/NWS/NCEP/OMB Technical Note No. 213 (2002).Google Scholar
  98. 98.
    R. Tonboe and L. Toudal, “Classification of New-ice in the Greenland Sea Using Satellite SSM/I Radiometer and SeaWinds Scatterometer Data and Comparison with Ice Model,” Rem. Sens. Environ., 97 (2005).Google Scholar
  99. 99.
    G. Vernieres, C. K. R. T. Jones, and K. Ide, “Capturing Eddy Shedding in the Gulf of Mexico from Lagrangian Observations,” Physica D: Nonlinear Phenomena, No. 2, 240 (2011).Google Scholar
  100. 100.
    A. A. Zelenko, Reducing Wind Observations on the High Seas to Standard Levels, CMM-MC-V/DOC 24 (WMO, 1986).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Hydrometeorological Research Center of the Russian FederationMoscowRussia

Personalised recommendations