Advertisement

Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 787–794 | Cite as

Investigation of Interannual Variability and Budget of Heat in an Eddy-resolving Numerical Model of Tropical Instability Waves in the Pacific Ocean

  • K. V. UshakovEmail author
  • R. A. Ibrayev
Article
  • 8 Downloads

Abstract

The characteristics and formation conditions of eddy meridional heat transport (MHT) in the eastern equatorial Pacific are studied using the results of eddy-resolving numerical modeling as compared with observational and reanalysis data. Calculations of the eddy MHT convergence at the equator are performed and realistic results in the analyzed region except for its easternmost part are obtained. The interannual variability and velocity of propagation of tropical instability waves are estimated. The errors of the time-averaged model solution are analyzed, and the assumptions on the mechanisms of their occurrence are made.

Keywords

Eddy-resolving model tropical instability waves eddy meridional heat transport 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. G. Demyshev and O. A. Dymova, “Calculation and Analysis of Water Circulation Energetics in the Black Sea Coastal Regions,” Morskoi Gidrofizicheskii Zhurnal, No. 3 (2017) [Phys. Oceaongr., No. 3 (2017)].Google Scholar
  2. 2.
    N. A. Dianskii, A. V. Gusev, and V. V. Fomin, “The Specific Features of Pollution Spread in the Northwest Pacific Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 48 (2012) [Izv., Atmos. Oceanic Phys, No. 2, 48 (2012)].Google Scholar
  3. 3.
    R. A. Ibrayev, R. N. Khabeev, and K. V. Ushakov, “Eddy–resolving 1/10° Model of the World Ocean,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 48 (2012) [Izv., Atmos. Oceanic Phys., No. 1, 48 (2012)].Google Scholar
  4. 4.
    A. B. Polonskii and S. B. Krashennikova, “Variability of the Currents’ Vertical Structure in the Western Subtropical Atlantic and Meridian Heat Transport,” Morskoi Gidrofizicheskii Zhurnal, No. 3 (2015) [Phys. Oceanogr., No. 3 (2015)].Google Scholar
  5. 5.
    K. A. Rogachev and N. V. Shlyk, “The Role of the Aleutian Eddies in the Kamchatka Current Warming,” Meteorol. Gidrol., No. 1 (2018) [Russ. Meteorol. Hydrol., No. 1, 43 (2018)].Google Scholar
  6. 6.
    Y. Aksenov, M. Karcher, A. Proshutinsky, R. Gerdes, B. A. de Cuevas, E. Golubeva, F. Kauker, A. Nguyen, G. Platov, M. Wadley, E. Watanabe, A. C. Coward, and G. Nurser, “Arctic Pathways of Pacific Water: Arctic Ocean Model Intercomparison Experiments,” J. Geophys. Res. Oceans, 121 (2016).Google Scholar
  7. 7.
    J. I. Antonov, D. Seidov, T. P. Boyer, R. A. Locarnini, A. V. Mishonov, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 2: Salinity, Ed. by S. Levitus, NOAA Atlas NESDIS 69 (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  8. 8.
    H. L. Bryden and E. C. Brady, “Eddy Momentum and Heat Fluxes and Their Effects on the Circulation of the Equatorial Pacific Ocean,” J. Mar. Res., 47 (1989).Google Scholar
  9. 9.
    E. de Boisseson, P. Laloyaux, and M. Balmaseda, Capturing Tropical Instability Waves in the ECMWF Coupled Reanalysis System, ERA Report Series (2015).Google Scholar
  10. 10.
    D. P. Dee, S. M. Uppala, A. J. Simmons, P. Berrisford, P. Poli, S. Kobayashi, U. Andrae, M. A. Balmaseda, G. Balsamo, P. Bauer, P. Bechtold, A. C. M. Beljaars, L. van de Berg, J. Bidlot, N. Bormann, C. Delsol, R. Dragani, M. Fuentes, A. J. Geer, L. Haimberger, S. B. Healy, H. Hersbach, E. V. Hylm, L. Isaksen, P. Kellberg, M. Kohler, M. Matricardi, A. P. McNally, B. M. Monge–Sanz, J.–J. Morcrette, B.–K. Park, C. Peubey, P. de Rosnay, C. Tavolato, J.–N. Thepaut, and F. Vitart, “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).Google Scholar
  11. 11.
    T. L. Delworth, A. Rosati, W. Anderson, A. J. Adcroft, V. Balaji, R. Benson, K. Dixon, S. M. Griffies, H.–C. Lee, R. C. Pacanowski, G. A. Vecchi, A. T. Wittenberg, F. Zeng, and R. Zhang, “Simulated Climate and Climate Change in the GFDL CM2.5 High–resolution Coupled Climate Model,” J. Climate, 25 (2012).Google Scholar
  12. 12.
    R. Gelderloos, C. A. Katsman, and S. S. Drijfhout, “Assessing the Roles of Three Eddy Types in Restratifying the Labrador Sea after Deep Convection,” J. Phys. Oceanogr., 41 (2011).Google Scholar
  13. 13.
    S. M. Griffies, A. Biastoch, C. Boning, F. Bryan, G. Danabasoglu, E. P. Chassignet, M. E. England, R. Gerdes, H. Haak, R. W. Hallberg, W. Hazeleger, J. Jungclaus, W. G. Large, G. Madec, A. Pirani, B. L. Samuels, M. Scheinert, A. Sen Gupta, C. A. Severijns, H. L. Simmons, A. M. Treguier, M. Winton, S. Yeager, and J. Yin, “Coordinated Ocean–ice Reference Experiments (COREs),” Ocean Modelling, No. 1–2, 26 (2009).Google Scholar
  14. 14.
    S. M. Griffies, M. Winton, W. G. Anderson, R. Benson, T. L. Delworth, C. O. Dufour, J. P. Dunne, P. Goddard, A. K. Morrison, A. Rosati, A. T. Wittenberg, J. Yin, and R. Zhang, “Impacts on Ocean Heat from Transient Mesoscale Eddies in a Hierarchy of Climate Models,” J. Climate, 28 (2015).Google Scholar
  15. 15.
    D. V. Hansen and C. A. Paul, “Genesis and Effects of Long Waves in the Equatorial Pacific,” J. Geophys. Res., 89 (1984).Google Scholar
  16. 16.
    S. R. Jayne and J. Marotzke, “The Oceanic Eddy Heat Transport,” J. Phys. Oceanogr., 32 (2002).Google Scholar
  17. 17.
    V. V. Kalmykov, R. A. Ibrayev, M. N. Kaurkin, and K. V. Ushakov, “Compact Modeling Framework v3.0 for High–resolution Global Ocean–ice–atmosphere Models,” Geosci. Model Develop., No. 10, 11 (2018).Google Scholar
  18. 18.
    R. A. Locarnini, A. V. Mishonov, J. I. Antonov, T. P. Boyer, H. E. Garcia, O. K. Baranova, M. M. Zweng, and D. R. Johnson, World Ocean Atlas 2009, Vol. 1: Temperature, Ed. by S. Levitus, NOAA Atlas NESDIS 68 (U.S. Government Printing Office, Washington, D.C., 2010).Google Scholar
  19. 19.
    A. J. Meijers, N. L. Bindoff, and J. L. Roberts, “On the Total, Mean, and Eddy Heat and Freshwater Transports in the Southern Hemisphere of a 1.8 x1.8Glob aOl cean Model,” J. Phys. Oceanogr., 37 (2007).Google Scholar
  20. 20.
    NOAA Climate Prediction Center. Historical El Nino/La Niría Episodes (1950–present), http://origin.cpc.ncep. noaa.gov/products/analysis_monitoring/ensostuff/ONI_v5.php.Google Scholar
  21. 21.
    N. A. Rayner, D. E. Parker, E. B. Horton, C. K. Folland, L. V. Alexander, D. P. Rowell, E. C. Kent, and A. Kaplan, “Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century,” J. Geophys. Res., No. D14, 108 (2003).Google Scholar
  22. 22.
    M. J. Roberts, “Impact of an Eddy–permitting Ocean Resolution on Control and Climate Change Simulations with a Global Coupled GCM,” J. Climate, 17 (2004).Google Scholar
  23. 23.
    M. J. Roberts, A. Clayton, and M. Demory, “Impact of Resolution on the Tropical Pacific Circulation in a Matrix of Coupled Models,” J. Climate, 22 (2009).Google Scholar
  24. 24.
    T. Shinoda, G. N. Kiladis, and P. E. Roundy, “Statistical Representation of Equatorial Waves and Tropical Instability Waves in the Pacific Ocean,” Atmos. Res., No. 1, 94 (2009).Google Scholar
  25. 25.
    R. D. Smith, M. E. Maltrud, F. O. Bryan, and M. W. Hecht, “Numerical Simulation of the North Atlantic Ocean at 1/10°,” J. Phys. Oceanogr., 30 (2000).Google Scholar
  26. 26.
    H. Tatebe and H. Hasumi, “Formation Mechanism of the Pacific Equatorial Thermocline Revealed by a General Circulation Model with a High Accuracy Tracer Advection Scheme,” Ocean Modelling, No. 3, 35 (2010).Google Scholar
  27. 27.
    K. V. Ushakov and R. A. Ibrayev, “Assessment of Mean World Ocean Meridional Heat Transport Characteristics by a High–resolution Model,” Russ. J. Earth Sci., 18 (2018).Google Scholar
  28. 28.
    D. L. Volkov, L.–L. Fu, and T. Lee, “Mechanisms of the Meridional Heat Transport in the Southern Ocean,” Ocean Dynamics, 60 (2010).Google Scholar
  29. 29.
    D. L. Volkov, T. Lee, and L.–L. Fu, “Eddy–induced Meridional Heat Transport in the Ocean,” Geophys. Res. Lett., 35 (2008).Google Scholar
  30. 30.
    C. S. Willett, R. R. Leben, and M. F. Lavin, “Eddies and Tropical Instability Waves in the Eastern Tropical Pacific: A Review,” Progress in Oceanogr., No. 2–4, 69 (2006).Google Scholar
  31. 31.
    S. Williams, M. Petersen, M. Hecht, M. Maltrud, J. Patchett, J. Ahrens, and B. Hamann, “Interface Exchange as an Indicator for Eddy Heat Transport,” Computer Graphics Forum, 31 (2012).Google Scholar
  32. 32.
    S. T. Zalezak, “Fully Multidimensional Flux–corrected Transport Algorithm for Fluids,” J. Com. Phys., 31 (1979).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  1. 1.Shirshov Institute of OceanologyRussian Academy of SciencesMoscowRussia
  2. 2.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations