Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 780–786 | Cite as

Analysis of Simulation of Stratosphere-troposphere Dynamical Coupling with the INM-CM5 Climate Model

  • P. N. VarginEmail author
  • S. V. Kostrykin
  • E. M. Volodin


The simulation of stratosphere-troposphere dynamic coupling is considered in five 50-year realizations of ensemble calculations with the 5th version of the INM-CM5 climate model developed in the Marchuk Institute of Numerical Mathematics of Russian Academy of Sciences. The model also includes the ocean model and the improved vertical resolution in the upper stratosphere and lower mesosphere.


Climate modeling stratosphere and troposphere dynamics sudden stratospheric warming 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. N. Vargin and E. M. Volodin, “Analysis of the Reproduction of Dynamic Processes in the Stratosphere Using the Climate Model of the Institute of Numerical Mathematics, Russian Academy of Sciences,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 1, 52 (2016) [Izv., Atmos. Oceanic Phys., No. 1, 52 (2016)].Google Scholar
  2. 2.
    P. N. Vargin, E. M. Volodin, A. Yu. Karpechko, and A. I. Pogorel’tsev, “Stratosphere–Troposphere Interactions,” Vestnik Akad. Nauk, No. 1, 85 (2015) [Her. Russ. Acad. Sci., No. 1, 85 (2015)].Google Scholar
  3. 3.
    E. M. Voiodin and S. V. Kostrykin, “The Aerosoi Module in the INM RAS Climate Model,” Meteoroi. Gidroi., No. 8 (2016) [Russ. Meteoroi. Hydroi., No. 8, 41 (2016)].Google Scholar
  4. 4.
    E. M. VoidiE, V. Mortikov, S. V. Kostrykin, V. Ya. Galin, V. N. Lykosov, A. S. Gritsun, N. A. Diansky, A. V. Gusev, and N. G. Yakovlev, “Simulation of Modern Climate with the New Version of the INM RAS Climate Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 53 (2017) [Izv., Atmos. Oceanic Phys., No. 2, 53 (2017)].Google Scholar
  5. 5.
    S. P. Smyshlyaev, A. I. Pogorel’tsev, V. Ya. Galin, and E. A. Drobyshevskaya, “Influence of Wave Activity on the Composition of the Polar Stratosphere,” Geomagnetizm i Aeronomiya, No. 1, 56 (2016) [Geomagnetism and Aeronomy, No. 1, 56 (2016)].Google Scholar
  6. 6.
    M. Baldwin and T. Dunkerton, “Propagation of the Arctic Oscillation from the Stratosphere to the Troposphere,” J. Geophys. Res., No. D24, 104 (1999).Google Scholar
  7. 7.
    M. Baldwin and T. Dunkerton, “Stratospheric Harbingers of Anomalous Weather Regimes,” Science, 294 (2001).Google Scholar
  8. 8.
    M. Baldwin and D. Thompson, “A Critical Comparison of Stratosphere–troposphere Coupling Indices,” Quart. J. Roy. Meteorol. Soc., 135 (2009).Google Scholar
  9. 9.
    C. Bell, L. Gray, A. Charlton–Perez, M. Joshi, and A. Scaife, “Stratospheric Communication of El Nino Teleconnections to European Winter,” J. Climate, 22 (2009).Google Scholar
  10. 10.
    A. Butler, D. Seidel, S. Hardiman, N. Butchart, T. Birner, and A. Match, “Defining Sudden Stratospheric Warmings,” Bull. Amer. Meteorol. Soc., 96 (2015).Google Scholar
  11. 11.
    N. Calvo, L. Polvani, and S. Solomon, “On the Surface Impact of Arctic Stratospheric Ozone Extremes,” Environ. Res. Lett., 10 (2015).Google Scholar
  12. 12.
    A. Chandran, R. Coltins, and V. Harvey, “Strato I phere–me so sphere Coupling during Strato tpheric Sudden Warming Events,” Adv. Space Res., 53 (2014).Google Scholar
  13. 13.
    A. Charlton and L. Polvani, “A New Look at Stratospheric Sudden Warmings. Part I: Climatology and Modeling Benchmarks,” J. Climate, 20 (2007).Google Scholar
  14. 14.
    A. Charlton–Perez, M. Baldwin, T. Birner, R. Black, A. Butler, N. Calvo, N. Davis, E. Gerber, N. Gillett, S. Hardiman, J. Kim, K. Kruger, Y.–Y. Lee, E. Manzini, B. McDaniel, L. Polvani, T. Reichler, T. A. Shaw, M. Sigmond, S.–W. Son, M. Toohey, K. Wilcox, S. Yoden, B. Christiansen, F. Lott, D. Shindell, S. Yukimoto, and S. Watanabe, “On the Lack of Stratospheric Dynamical Variability in Low–top Versions of the CMIP5 Models,” J. Geophys. Res., No. 6, 118 (2013).Google Scholar
  15. 15.
    P. Hitchcock and I. Simpson, “The Downward Influence of Stratospheric Sudden Warmings,” J. Atmos. Sci., 71 (2014).Google Scholar
  16. 16.
    L. Jia, X. Yang, G. Vecchi, R. Gudgel, T. Delworth, S. Fueglistaler, P. Lin, A. Scaife, S. Underwood, and S. Lin, “Seasonal Prediction Skill of Northern Extratropical Surface Temperature Driven by the Stratosphere,” J. Climate, 30 (2017).Google Scholar
  17. 17.
    E. Kolstad, T. Breiteig, and A. Scaife, “The Association between Stratospheric Weak Polar Vortex Events and Cold Air Outbreaks in the Northern Hemisphere,” Quart. J. Roy. Meteorol. Soc., 136 (2010).Google Scholar
  18. 18.
    G. Manney, Z. Lawrence, M. Santee, W. Read, N. Livesey, A. Lambert, L. Froidevaux, H. Pumphrey, and M. Schwartz, “A Minor Sudden Stratospheric Warming with a Major Impact: Transport and Polar Processing in the 2014/2015 Arctic Winter,” Geophys. Res. Lett., 42 (2015).Google Scholar
  19. 19.
    D. Peters and P. Vargin, “Influence of Subtropical Rossby Wave Trains on Planetary Wave Activtty over Antarctica in September 2002,” Tellus, 67 (2015).Google Scholar
  20. 20.
    A. Pogoreltsev, E. Savenkova, O. Aniskina, T. Ermakova, W. Chen, and K. Wei, “Interannual and Intraseasonal Variability of Stratospheric Dynamics and Stratosphere–troposphere Coupling during Northern Winter,” J. Atmos. Solar–Ter. Phys., 136 (2015).Google Scholar
  21. 21.
    T. Runde, M. Dameris, H. Garny, and D. Kinnison, “Classification of Stratospheric Extreme Events According to Their Downward Propagation to the Troposphere,” Geophys. Res. Lett., 43 (2016).Google Scholar
  22. 22.
    D. Thompson and J. Wallace, “The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields,” Geophys. Res. Lett., 25 (1998).Google Scholar
  23. 23.
    L. Tomassini, E. Gerber, M. Baldwin, F. Bunzel, and M. Giorgetta, “The Role of Stratosphere–troposphere Coupling in the Occurrence of Extreme Winter Cold Spells over Northern Europe,” J. Advances in Modeling Earth Systems, 4 (2012).Google Scholar
  24. 24.
    A. L. Andrady, P. J. Aucamp, A. Austin, A. F. Bais, C. L. Ballare, P. W. Barnes, G. H. Bernhard, J. F. Bornman, M. M. Caldwell, F. R. de Gruijl, D. J. Erickson III, S. D. Flint, K. Gao, P. Gies, D.–P. Hader, M. Ilyas, J. Longstreth, R. Lucas, S. Madronich, R. L. McKenzie, R. Neale, M. Norval, K. K. Pandy, N. D. Paul, M. Rautio, H. H Redhwi, S. A. Robinson, K. Rose, M. Shao, R. P. Sinha, K. R. Solomon, B. Sulzberger, Y. Takizawa, X. Tang, A. Torikai, K. Tourpali, J. C. van der Leun, S.–A. Wangberg, C. E. Williamson, S. R. Wilson, R. C. Worrest, A. R. Young, and R. G. Zepp, “Environmental Effects of Ozone Depletion and Its Interactions with Climate Change: 2014 Assessment", J. Photochem. and Photobiol. Sci., 14 (2015).Google Scholar
  25. 25.
    D. Wilks, Statistical Methods in the Atmospheric Sciences, 2nd ed. (Elsevier, Oxford, 2006).Google Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • P. N. Vargin
    • 1
    Email author
  • S. V. Kostrykin
    • 2
  • E. M. Volodin
    • 2
  1. 1.Central Aerological ObservatoryDolgoprudnyRussia
  2. 2.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia

Personalised recommendations