Russian Meteorology and Hydrology

, Volume 43, Issue 11, pp 773–779 | Cite as

Multiscale Global Atmosphere Model SL-AV: the Results of Medium-range Weather Forecasts

  • M. A. TolstykhEmail author
  • R. Yu. Fadeev
  • V. V. Shashkin
  • G. S. Goyman
  • R. B. Zaripov
  • D. B. Kiktev
  • S. V. Makhnorylova
  • V. G. Mizyak
  • V. S. Rogutov


Development of the multiscale version of the global atmosphere model SL-AV required many improvements in the dynamical core, replacement or refinement of parameterization algorithms and complex tuning of the model. These modifications were initially tested with the experiments on modern climate simulation and then incorporated into the model configuration for medium-range numerical weather prediction. The impact of these model improvements on forecast quality is studied in this paper. The increase in accuracy of model climate characteristics has led to the reduction of forecast errors. The comparison of quality for numerical forecasts starting from the initial data of Hydrometcenter of Russia and ECMWF is carried out. The effect of replacing the initial data turned out to be comparable to the effect of multi-year works on model development. This shows the importance and necessity of development and improvement of the Hydrometcenter of Russia data assimilation system.


Atmosphere general circulation model numerical weather prediction parameterizations for subgrid-scale processes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. M. Volodin, V. Ya. Galin, A. S. Gritsun, A. V. Gusev, N. A. Diansky, V. P. Dymnikov, R. A. Ibrayev, V. V. Kalmykov, S. V. Kostrykin, D. V. Kulyamin, V. N. Lykossov, E. V. Mortikov, O. O. Rybak, M. A. Tolstykh, R. Yu. Fadeev, I. A. Chernov, V. V. Shashkin, and N. G. Yakovlev, Mathematical Modeling of the Earth System (MAKS Press, Moscow, 2016) [in Russian].Google Scholar
  2. 2.
    E. M. Volodin and V. N. Lykosov, “Parameterization of Heat and Moisture Processes in Soil–Vegetation System. 1. Description and Calculations Using Local Observational Data,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 4, 34 (1998) [Izv., Atmos. Oceanic Phys., No. 4, 34 (1998)].Google Scholar
  3. 3.
    V. P. Dymnikov, G. R. Kontarev, N. V. Guseva, I. V. Kolotovkin, A. G. Kulinych, N. P. Gazetova, G. V. Shemetova, L. E. Kaminskaya, and Z. V. Torbina, “Forecasts of Meteorological Elements in a Limited Territory,” Meteorol. Gidrol., No. 9 (1975) [in Russian].Google Scholar
  4. 4.
    G. I. Marchuk, V. P. Dymnikov, V. B. Zalesny, V. N. Lykossov, and V. Ya. Galin, Mathematical Modeling of the General Circulation of the Atmosphere a–nd Ocean (Gidrometeoizdat, Leningrad, 1984) [in Russian].Google Scholar
  5. 5.
    M. A. Tolstykh, “Semi–Lagrangian High–resolution Model of the Atmosphere for Numerical Weather Prediction,” Meteorol. Gidrol., No. 4 (2001) [Russ. Meteorol. Hydrol., No. 4 (2001)].Google Scholar
  6. 6.
    M. A. Tolstykh, N. A. Diansky, A. V. Gusev, and D. B. Kiktev, “Simulation of Seasonal Anomalies of Atmospheric Circulation Using Coupled Atmosphere–Ocean Model,” Izv. Akad. Nauk, Fiz. Atmos. Okeana, No. 2, 50 (2014) [Izv., Atmos. Oceanic Phys., No. 2, 50 (2014)].Google Scholar
  7. 7.
    M. A. Tolstykh, J.–F. Geleyn, E. M. Volodin, N. N. Bogoslovskii, R. M. Vilfand, D. B. Kiktev, T. V. Krasjuk, S. V. Kostrykin, V. G. Mizyak, R. Yu. Fadeev, V. V. Shashkin, A. V. Shlyaeva, I. N. Ezau, and A. Yu. Yurova, “Development of the Multiscale Version of the SL–AV Global Atmosphere Model,” Meteorol. Gidrol., No. 6 (2015) [Russ. Meteorol. Hydrol., No. 6, 40 (2015)].Google Scholar
  8. 8.
    M. A. Tolstykh, V. V. Shashkin, R. Yu. Fadeev, A. V. Shlyaeva, V. G. Mizyak, V. S. Rogutov, N. N. Bogoslovskii, G. S. Goyman, Atmosphere Modelling System for Seamless Prediction (Triada Ltd, Moscow, 2017) [in Russian].Google Scholar
  9. 9.
    R. Yu. Fadeev, “Algorithm for Reduced Grid Generation on a Sphere for a Global Finite–difference Atmospheric Model,” Computational Mathematics and Mathematical Physics, No. 2, 53 (2013).Google Scholar
  10. 10.
    R. Yu. Fadeev, M. A. Tolstykh, and E. M. Volodin, “Climate Version of the SL–AV Atmosphere Model: Development and First Results,” Meteorol. Gidrol. (2019) [Russ. Meteorol. Hydrol. (2019)] (in print).Google Scholar
  11. 11.
    M. D. Tsyrul’nikov, P. I. Svirenko, V. E. Gorin, M. E. Gorbunov, A. L. Ordin, and A. N. Bagrov, “New Technology for Objective Analysis Based on 3D–VAR Scheme,” in Results of Testing New and Improved Technologies, Methods for Hydrometeorological Forecasts, No. 39 (2012) [in Russian].Google Scholar
  12. 12.
    V. V. Shashkin, M. A. Tolstykh, and E. M. Volodin, “Modelling of the Stratosphere Circulation Using SL–AV Semi–Lagrangian Model,” Meteorol. Gidrol. (2019) [Russ. Meteorol. Hydrol. (2019)] (in print).Google Scholar
  13. 13.
    V. V. Shashkin, M. A. Tolstykh, A. R. Ivanova, and E. N. Skriptunova, “SL–AV Atmospheric Model Version Using a–p Hybrid Vertical Coordinates,” Meteorol. Gidrol., No. 9 (2017) [Russ. Meteorol. Hydrol., No. 9, 42 (2017)].Google Scholar
  14. 14.
    I. Bastak Duran, J.–F. Geleyn, and F. A. Vana, “Compact Model for the Stability Dependency of TKE Production–Destruction–Conversion Terms Valid for the Whole Range of Richardson Numbers,” J. Atmos. Sci., 71 (2014).Google Scholar
  15. 15.
    M. Bonavita, E. Holm, L. Isaksen, and M. Fisher, “The Evolution of the ECMWF Hybrid Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., No. 694, 142 (2016).Google Scholar
  16. 16.
    M.–D. Chou, M. J. Suarez, A Solar Radiation Parameterization (CLIRAD–SW) for Atmospheric Studies (NASA Goddard Space Flight Center, NASA, Greenbelt, MD, 1999).Google Scholar
  17. 17.
    D. P. Dee et al., “The ERA–Interim Reanalysis: Configuration and Performance of the Data Assimilation System,” Quart. J. Roy. Meteorol. Soc., 137 (2011).Google Scholar
  18. 18.
    R. Yu. Fadeev, K. V. Ushakov, V. V. Kalmykov, M. A. Tolstykh, and R. A. Ibrayev, “Coupled Atmosphere–Ocean Model SLAV–INMIO: Implementation and First Results,” Russ. J. Num. Anal. and Math. Mod., No. 6, 31 (2016).Google Scholar
  19. 19.
    J.–F. Geleyn, F. Vana, J. Cedilnik, M. Tudor, and B. Catry, “An Intermediate Solution between Diagnostic Exchange Coefficients and Prognostic TKE Methods for Vertical Turbulent Transport,” in CAS/JSC WGNE "Blue Book” Annual Report: Research Activities in Atmospheric and Ocean Modelling, Ed. by J. Cote (2006).Google Scholar
  20. 20.
    C. O. Hines, “Doppler–spread Parameterization of Gravity–wave Momentum Deposition in the Middle Atmosphere. Part 1: Basic Formulation,” J. Atmos. & Solar–Terrestrial Phys., No. 4, 59 (1997).Google Scholar
  21. 21.
    T. Jung, N. D. Gordon, P. Bauer, D. H. Bromwich, M. Chevallier, J. J. Day, J. Dawson, F. Doblas–Reyes, C. Fairall, H. F. Goessling, M. Holland, J. Inoue, T. Iversen, S. Klebe, P. Lemke, M. Losch, A. Makshtas, B. Mills, P. Nurmi, D. Perovich, P. Reid, I. A. Renfrew, G. Smith, G. Svensson, M. Tolstykh, and Q. Yang, “Advancing Polar Prediction Capabilities on Daily to Seasonal Time Scales,” Bull. Amer. Meteorol. Soc., 97 (2016).Google Scholar
  22. 22.
    E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, and S. A. Clough, “RRTM, a Validated Correlated–k Model for the Longwave,” J. Geophys. Res., No. 16, 102 (1997).Google Scholar
  23. 23.
    A. Staniforth and J. Cote, “Semi–Lagrangian Integration Schemes for Atmospheric Models. A Review,” Mon. Wea. Rev., 119 (1991).Google Scholar
  24. 24.
    T. Tarasova and B. Fomin, “The Use of New Parameterizations for Gaseous Absorption in the CLIRAD–SW Solar Radiation Code for Models,” J. Atmos. and Ocean. Technol., No. 6, 24 (2007).Google Scholar
  25. 25.
    K. E. Taylor, R. J. Stouffer, and G. A. Meehl, “An Overview of CMIP5 and the Experimental Design,” Bull. Amer. Meteorol. Soc., 93 (2012).Google Scholar
  26. 26.
    M. Tolstykh, V. Shashkin, R. Fadeev, and G. Goyman, “Vorticity–divergence Semi–Lagrangian Global Atmospheric Model SL–AV20: Dynamical Core,” Geosci. Model Develop., 10 (2017).Google Scholar
  27. 27.
    M. A. Tolstykh, “Variable Resolution Global Semi–Lagrangian Atmospheric Model,” Russ. J. Num. Anal. & Math. Mod., No. 4, 18 (2003).Google Scholar
  28. 28.
    P. Termonia, C. Fischer, E. Bazile, F. Bouyssel, R. Brozkova, P. Benard, B. Bochenek, D. Degrauwe, M. Derkova, R. E. Khatib, R. Hamdi, J. Masek, P. Pottier, N. Pristov, Y. Seity, P. Smolikova, O. Spaniel, M. Tudor, Y. Wang, C. Wittmann, and A. Joly, “The ALADIN System and Its Canonical Model Configurations AROME CY41T1 and ALARO CY40T1,” Geosci. Model Develop., 11 (2018).Google Scholar
  29. 29.
    TRMM: Tropical Rainfall Measuring Mission, Scholar
  30. 30.
    World Meteorological Organization. Manual on the Global Data–processing and Forecasting System (WMO No. 485, Geneva, 2017), Scholar
  31. 31.
    World Meteorological Organization Lead Centre for Deterministic Forecast Verification, Scholar

Copyright information

© Allerton Press, Inc. 2018

Authors and Affiliations

  • M. A. Tolstykh
    • 1
    • 2
    • 3
    Email author
  • R. Yu. Fadeev
    • 1
    • 2
    • 3
  • V. V. Shashkin
    • 1
    • 2
  • G. S. Goyman
    • 1
    • 2
    • 3
  • R. B. Zaripov
    • 2
  • D. B. Kiktev
    • 2
  • S. V. Makhnorylova
    • 2
  • V. G. Mizyak
    • 2
  • V. S. Rogutov
    • 2
  1. 1.Marchuk Institute of Numerical MathematicsRussian Academy of SciencesMoscowRussia
  2. 2.Hydrometeorological Research Center of the Russian FederationMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudnyRussia

Personalised recommendations